首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Variations at 22 enzyme coding loci were surveyed in 11 populations of the oyster Ostrea edulis L., which were sampled between 1988 and 1990 along the Atlantic and Mediterranean coasts of Europe. Atlantic oyster beds suffered a steady decline during the last century, and restocking of beds with oysters of foreign origin has probably resulted in a high degree of interbreeding of natural oyster stocks from all Atlantic Europe. Our study confirms the low levels of genetic variability previously reported for the oyster populations from the Atlantic coasts, and extends it to the Mediterranean coasts. The locus arginine-kinase (ARK *) exhibited a high degree of interpopulation differentiation (F ST=0.289), resulting from extensive variation in gene frequencies along a geographical cline. However, the overall genetic differentiation between populations was slight, and similar to that reported for other local populations of bivalves (mean genetic distance between populations is 0.010, mean F ST=0.062). A general pattern of increasing differentiation along the coastline in an Atlantic-mediterranean direction emerged; but genetic differentiation among the Atlantic populations was not significantly lower than that observed among the Mediterranean populations. This and other results suggest that the effects of extensive transplantation of oysters among various areas in Europe are detectable only in some particular localities. The geographical distribution of low-frequency alleles suggests a restriction to gene flow outwards from the Mediterranean Sea, across the Straits of Gibraltar.  相似文献   

2.
Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I). Oysters were sampled from populations in Portugal (two populations), Tunisia (two populations) and Morocco (one population), identified as O. stentina on the basis of shell morphological characters. Our data supported a high degree of differentiation between O. stentina and O. edulis and a close relationship between O. stentina and both Ostrea aupouria (from New Zealand) and Ostreola equestris (from Mexico Gulf/Atlantic). The status of this geographic disjunction between these closely related species is discussed. Furthermore, although identified in a separate genus Ostreola by Harry (Veliger 28:121–158, 1985), our molecular data on O. stentina, together with those available for the other two putative congeneric species, O. equestris and Ostreola conchaphila, would favour incorporation of Ostreola in Ostrea. Finally, a PCR-RFLP approach allowed the rapid identification of O. edulis and O. stentina.  相似文献   

3.
Allozyme and mitochondrial DNA (mtDNA) genetic variation was compared in orange roughy (Hoplostethus atlanticus Collett) collected from waters off southern Australia and from waters about 22 000 km away in the North Atlantic west of Scotland. Samples were screened for 11 polymorphic allozyme loci and with 9 restriction enzymes. Significant heterogeneity between the two areas was detected for three allozyme loci (ADA *, CK * and GPI-1 *), and the overall G ST (gene-diversity statistic) value of 1% was small but significant. Significant mtDNA haplotype heterogeneity was observed after 2- of haplotype frequencies but not after a G ST analysis. Nucleotide sequence-diversity analysis showed very low net divergence (0.0023%) between the two samples. The Australian orange roughy had a lower allozyme heterozygosity and a lower mitochondrial DNA nucleon diversity than the North Atlantic sample. The very limited, although significant, allozyme and mitochondrial DNA heterogeneity between these areas suggests that there is some gene flow between these two populations. The species appears to be widespread, with its presence reported from the southern Pacific, southern Indian, and northern and southern Atlantic Oceans, and it is likely that gene flow between the antipodes is mediated by stepping-stone exchange between adjacent populations rather than by direct migration.  相似文献   

4.
Megrim, Lepidorhombus whiffiagonis, and four spot megrim, Lepidorhombus boscii, are two marine fish species of high commercial interest. Despite their quite heavy exploitation little is known on the genetic structure of their populations. The present work aimed at characterizing the first seven microsatellites markers available for the two megrim species. These new markers were in a second step employed to describe the population structure of the two species among their almost entire habitat range (Atlantic and Mediterranean samples). Our study confirmed the existence of a strong genetic difference between Atlantic and Mediterranean megrim species already described in the literature for L. whiffiagonis on the basis of variations at ribosomal genes. Additionally our analysis gave the first evidences of a strong genetic differentiation among Atlantic populations in both megrim species (within Atlantic global FST in L. whiffiagonis and L. boscii were respectively 0.158 and 0.145). When describing megrim population structure, the comparison between allele-frequency-based tests (FST comparisons) and genotype-based inferences (Bayesian approach) gave evidences of a hierarchical structure of the populations. In conclusion, our work enlighten the existence of two different stocks within the Atlantic Ocean and one in the Mediterranean Sea that will clearly need to be managed separately. As the present results do not fully support the current megrim stock boundaries they will surely help to rethink megrim management policies in the future.  相似文献   

5.
Genetic relationships among Mytilus populations throughout the North Atlantic region, including the Mediterranean and the Baltic Sea, were studied using enzyme electrophoresis. Three distinct groups of populations, each of a remarkably wide distribution, can be recognised on the basis of their multilocus allelic composition: (1) M. galloprovincialis L. of the Mediterranean and western Europe; (2) a genetically distinct form of M. edulis Lmk. from both the Baltic Sea and some localities in the Canadian Maritime Provinces (here provisionally termed the trossulus type mussel); and (3) the traditional Atlantic M. edulis populations of northwestern European coasts and most of eastern North America. These groups are regarded as representing three relatively old evolutionary lineages, which all deserve separate and equal systematic status. The main part of the differentiation at most of the loci studied is accounted for by this major systematic pattern, but considerable geographical differentiation within each of the three principal groups was also detected. At single loci, different electromorphs were found to prevail in disjunct populations of M. galloprovincialis (Mediterranean/Britain) and of the trossulus-type mussel (Baltic/eastern Canada). Within the Atlantic M. edulis, a major part of the differentiation is transoceanic. At one locus (Ap), geographic differentiation appeared to be relatively independent of the systematic boundaries; the possible role of interlineage hybridisation in contact areas in regulating the pattern of geographical variation is discussed.  相似文献   

6.
To determine the genetic population structure of blue crabs (Callinectes sapidus Rathbun), electrophoretic allozyme analysis was performed on 750 individuals collected from 16 nearshore locations ranging from New York to Texas, USA. Twenty enzymes and non-enzymatic proteins coded by 31 presumptive loci were examined. Twenty-two loci were either monomorphic or polymorphic at less than theP 95 level; alleles for these polymorphic loci were geographically dispersed. Allele frequencies for three of the remaining polymorphic loci were homogeneous over all populations, as were levels of polymorphism and heterozygosity. Phenograms generated by the UPGMA (unweighted pair-group method using arithmetic averages) and distance Wagner methods exhibited no geographic pattern in the clustering of populations. Estimates ofN em (effective number of migrants per generation between populations) indicated substantial gene flow, with aalues sufficiently high to infer panmixia between all blue crab populations from New York to Texas. However, despite this high level of gene flow, two striking patterns of geographic differentiation occurred: genetic patchiness and clinal variation. Allele frequencies atEST-2, GP-1, IDHP-2, DPEP-1, DPEP-2, andTPEP exhibited genetic patchiness on local and range-wide geographic scales, and allele frequencies atEST-2 varied temporally. Genetic patchiness in blue crabs is likely to be the result of the pre-settlement formation and subsequent settlement of genetically heterogeneous patches of larvae; allele frequencies of those larval patches may then be further modified through ontogeny by localized selection. In the Atlantic Ocean, a regional latitudinal cline ofEST-2 allele frequencies was superimposed on the range-wide genetic patchiness exhibited by that locus. This pattern against a background of high gene flow is highly likely to be maintained by selection. In estuaries along the Atlantic Ocean coast, a combination of low adult long-distance migration and a high retention rate of locally spawned larvae could serve to segregate populations and allow for the development of the geographic cline inEST-2. The Gulf of Mexico showed no apparent cline, perhaps due to long-distance migration of females in some regions of the Gulf, or to masking by genetic patchiness. These results emphasize the importance of both ecological and evolutionary time scales and structuring mechanisms in determining genetic population structure.  相似文献   

7.
The genetic population structures of Atlantic northern bluefin tuna ( Thunnus thynnus thynnus) and albacore ( T. alalunga) were examined using allozyme analysis. A total of 822 Atlantic northern bluefin tuna from 18 different samples (16 Mediterranean, 1 East Atlantic, 1 West Atlantic) and 188 albacore from 5 samples (4 Mediterranean, 1 East Atlantic) were surveyed for genetic variation in 37 loci. Polymorphism and heterozygosity reveal a moderate level of genetic variability, with only two highly polymorphic loci in both Atlantic northern bluefin tuna ( FH* and SOD- 1*) and albacore ( GPI- 3* and XDH*). The level of population differentiation found for Atlantic northern bluefin tuna and albacore fits the pattern that has generally been observed in tunas, with genetic differences on a broad rather than a more local scale. For Atlantic northern bluefin tuna, no spatial or temporal genetic heterogeneity was observed within the Mediterranean Sea or between the East Atlantic and Mediterranean, indicating the existence of a single genetic grouping on the eastern side of the Atlantic Ocean. Very limited genetic differentiation was found between West Atlantic and East Atlantic/Mediterranean northern bluefin tuna, mainly due to an inversion of SOD- 1* allele frequencies. Regarding albacore, no genetic heterogeneity was observed within the Mediterranean Sea or between Mediterranean and Azores samples, suggesting the existence of a single gene pool in this area.  相似文献   

8.
The genetic relationships between morphologically indistinguishable marine and brackish-water populations of Monocelis lineata (O.F. Müller, 1774) (Proseriata: Monocelididae) were analysed by means of allozyme electrophoresis. Fifteen samples of M. lineata (13 from the Mediterranean and two from the Atlantic) from coastal marine and brackish-water habitats were examined for variation at 18 loci. Eleven loci were polymorphic in at least one population of M. lineata. Low levels of within-population genetic variability were found, with average observed and expected heterozygosity values ranging from Ho=0.015±0.015 to 0.113±0.044, and from He=0.028±0.028 to 0.138±0.054, respectively. The occurrence of a number of private alleles indicated a marked genetic divergence among populations of M. lineata, with Rogers genetic distances ranging from DR=0.003 to 0.676 and a highly significant FST value (0.918±0.012, P<0.001). UPGMA (unweighted pair-group method using arithmetic average) cluster analysis and multidimensional scaling showed a clear genetic divergence between marine and brackish-water populations. Moreover, Atlantic and Mediterranean populations were sharply separated. Our results suggest that M. lineata is a complex of sibling species.Communicated by R. Cattaneo-Vietti, Genova  相似文献   

9.
Marine mussels (Mytilus spp.) belong to a group of benthic species crucial to coastal ecosystems in Europe and are important for the cultivation industry. In the present study, the nuclear adhesive protein marker (Me15/16) was used for identification of Mytilus species in coastal areas, on a large geographic scale in Europe. Pure M. edulis populations were found in the White Sea and Iceland. M. edulis, M. trossulus and their hybrids were found in the Baltic Sea and the North Sea (Oosterschelde, The Netherlands). M. galloprovincialis, M. edulis and their hybrids occurred in Ireland. M. galloprovincialis populations were observed in the Sea of Azov (Black Sea), the Mediterranean and Portugal. The mitochondrial (mt) DNA coding-region ND2-COIII was studied by PCR (polymerase chain reaction) and RFLP (restriction fragment length polymorphism) assay methods. The mtDNA control region was studied by PCR. Substantial differentiation in the frequency of female haplotypes among the studied populations in Europe was observed. Despite isolation between the Mytilus taxa on a macro-geographic scale, considerable mitochondrial gene flow occurred between populations, with introgression in hybrid zones on a more local geographic scale in Europe. MtDNA of the Atlantic Iberian (Portugal) population of M. galloprovincialis was more similar to mtDNA in populations of M. galloprovincialis and M. edulis from the Atlantic coasts of the Ireland and M. edulis from the North Sea, than to M. galloprovincialis from the Mediterranean. Lower polymorphism of mtDNA in populations of the Baltic and Azov Sea mussels in comparison with other European populations was observed and can be explained by the recent history of both seas after the Pleistocene glaciation. In the M. galloprovincialis population from the Azov Sea, the presence of the male-inherited (M) genome was demonstrated for the first time by sequencing the control region and was observed at high frequency. Possible influence of mussel culture on geographic distribution of the Mytilus taxa in Europe is discussed.  相似文献   

10.
Stock heterogeneity was investigated in albacore tuna (Thunnus alalunga, Bonnaterre 1788), a commercially important species in the North Atlantic Ocean and Mediterranean Sea. Twelve polymorphic microsatellite loci were examined in 581 albacore tuna from nine locations, four in the north-east Atlantic Ocean (NEA), three in the Mediterranean Sea (MED) and two in the south-western Pacific Ocean (SWP). Maximum numbers of alleles per locus ranged from 9 to 38 (sample mean, 5.2–22.6 per locus; overall mean, 14.2 ± 0.47 SE), and observed heterozygosities per locus ranged from 0.44 to 1.00 (overall mean: 0.79 ± 0.19 SE). Significant deficits of heterozygotes were observed in 20% of tests. Multilocus F ST values were observed ranging from 0.00 to Θ = 0.036 and Θ′ = 0.253, with a mean of Θ = 0.013 and Θ′ = 0.079. Pairwise F ST values showed that the SWP, NEA and MED stocks were significantly distinct from one another, thus corroborating findings in previous studies based on mitochondrial DNA, nuclear DNA (other than microsatellites) and allozyme analyses. Heterogeneity was observed for the first time between samples within the Mediterranean Sea. GENELAND indicated the potential presence of three populations across the NEA and two separate populations in the Mediterranean Sea. Observed genetic structure may be related to migration patterns and timing of movements of subpopulations to the feeding grounds in either summer or autumn. We suggest that a more intensive survey be conducted throughout the entire fishing season to ratify or refute the currently accepted genetic homogeneity within the NEA albacore stock.  相似文献   

11.
12.
Protein electrophoresis on starch gels was used to investigate population genetic structure of the barnacles Chthamalus montagui Southward and C. stellatus (Poli) over their north-east Atlantic and Mediterranean ranges. In each species, a single locus exhibited marked differentiation of allele frequencies between Atlantic and Mediterranean localities; in C. stellatus, genetic differentiation between the two basins had not previously been noted. In both species, mean heterozygosity per locus appeared higher in the Mediterranean samples than in the Atlantic, and Mediterranean populations had more alleles at the loci studied. Possible explanations for the differentiation between the Atlantic and the Mediterranean populations are discussed. Received: 30 May 1996 / Accepted: 17 September 1996  相似文献   

13.
An examination by protein-gel electrophoresis of 19 different geographical populations of the American oyster Crassostrea virginica (Gmelin) was conducted along the Atlantic coast and the Gulf of Mexico. Estimates were made of levels of genetic variation and similarity among the populations based on 32 structural loci. The percentage of loci polymorphic ranged from 46.9 to 65.6% along the Atlantic coast while the estimate ranged from 54.8% to 68.8% on the Gulf of Mexico. The percentage of loci heterozygous ranged from 18.6 to 23.6% along the Atlantic coast and from 20.0 to 25.4% in the Gulf of Mexico. The genetic similarities between all contiguous populations from Cape Cod, Massachusetts to Corpus Christi, Texas were estimated as 99%, while the same estimate between Corpus Christi and Brownsville, Texas was computed as 93%, indicating a major transition in genetic structure for the Brownsville population of the Laguna Madre. The study revealed that the migration of planktonic oyster larvae is predominantly in a westerly direction along the Gulf of Mexico and that gene flow appears to be disrupted in the region of the Laguna Madre. Evidence has been presented for single gene selection at the Lap-2 and Pgi loci in the form of macrogeographical clines in allele frequencies with changing environmental conditions.  相似文献   

14.
Genetic diversity among four natural samples of Blackspot seabream (Pagellus bogaraveo, Brünnich, 1768) from different fishing grounds exploited by Spanish fisheries was analyzed through the use of 12 microsatellite markers. The samples were captured off the Spanish coasts from the Mediterranean Sea to the Cantabrian Sea within the same continental slope. High levels of genetic diversity were revealed for every population and every locus was polymorphic at the 0.95 level. The average number of alleles, average heterozygosity and PIC were found to be 15.75, 0.833 and 0.818, respectively. In general, population differentiation was not detected in these samples. Through AMOVA, a low level of variation between regions (Mediterranean vs. Atlantic samples) was observed, though this was not significant. A larger percentage of total variation was observed inside the ‘within populations’ class. Thus, AMOVA did not reveal any significant population substructure. Moreover, no correlation was found between geographical and FST estimates and the observed results did not allow the improvement of a model of isolation by distance. The high homogeneity revealed by means of these markers could indicate the absence of physical frontiers between the geographical areas analyzed in this survey, especially between Atlantic and Mediterranean areas.  相似文献   

15.
Temperate sardines fall into two related monotypic genera,Sardina andSardinops. Sardina exists as a cluster of subpopulations in the northeastern Atlantic and Mediterranean, andSardinops encompasses five geographically-isolated regional populations: (1) South Africa-Namibia, (2) Australia-New Zealand, (3) Chile-Peru, (4) Mexico-California and (5) Japan-Russia. We surveyed electrophoretic variability in the products of 34 protein encoding loci inSardina (N=26) and the five Indian-Pacific populations ofSardinops (N=222), collected from 1983 to 1991. Nei's genetic distances () between samples ofSardina andSardinops averaged 1.04 and are typical of distances between species of related genera.s between the regional forms ofSardinops were <-0.011, indicating thatSardinops consists of a single species with widely-scattered subpopulations. Assuming a molecular clock calibrated by the rise of the Panama Isthmus and the opening of the Bering Strait, these genetic distances correspond to times since divergence of <200 000 yr. AlthoughSardinops populations showed a significant degree of allele-frequency heterogeneity (F ST, a measure of population differentiation, averaged 0.085 over 8 polymorphic loci), the distribution of genetic distances and tests of allele-frequency heterogeneity could not distinguished between hypotheses of north-south antitropical or east-west oceanic dispersal. Low levels of gene diversity inSardinops and mutation-drift disequilibria are consistent with a strong reduction in population size before the Late Pleistocene dispersal to the corners of the Indian-Pacific Oceans of an ancestralSardinops population.  相似文献   

16.
J. M. Lacson 《Marine Biology》1994,118(3):359-365
A survey of intraspecific allozymic variation among samples of the damselfishes Chrysiptera cyanea and Pomacentrus coelestis collected from Palau and Okinawa revealed levels of genetic divergence far in excess of estimates reported previously for populations of coral reef fishes. Absolute or nearly fixed differences in allele frequencies were detected at ADA *, sMDH-2 *, MEP-1 *, PEPB *, PEP-LT * and sSOD *, and at sAAT *, GPI-A *, LDH-1 *, and PEPB *, among the geographic samples of C. cyanea and P. coelestis, respectively. Examination of allele frequencies at most other loci (26 for C. cyanea; 24 for P. coelestis) revealed slight differentiation or identical fixation among the geographic samples. The observed patterns of allele frequency distribution suggest the existence of localized demes of these fishes: these demes may be cryptic and/or incipient species. Whether or not speciation is incipient, the observed patterns of allozymic and isozymic variability suggest that natural selection is a factor in the maintenance of population substructuring of the study species. Pronounced allelic differences were highly concentrated at a small number of loci: strongly bimodal frequency distributions of loci relative to their genetic identities (I) were observed for among-population comparisons in both study species. Allozymes encoded by the PEPB * locus in samples of the noncongeners from Palau exhibited identical electrophoretic mobilities. In Palauan P. coelestis, mSOD * is expressed but sSOD * apparently is not, whereas in Okinawan P. coelestis, both mSOD * and sSOD * are expressed.  相似文献   

17.
Dascyllus aruanus were collected from 13 different locations in French Polynesia between 15 November 1990 and 15 February 1991 in order to examine larval dispersal on four spatial scales: within-feef, within-island, within-archipelago, among-archipelagoes. Average polymorphism was analysed by protein electrophoresis at two levels (P95=0.285 and P90=0.107) from 12 and 3 polymorphic loci, respectively. Spatial genetic variation displayed a low level of differentiation between populations among archipelagoes, and homogeneity at lower spatial scales. Two hypotheses are proposed to explain the genetic structure observed. The first suggests substantial gene flow between the islands during the pelagic larval phase, the second that the absence of differentiation is the result of recent colonisation. Genetic variation amongst size classes showed a significant heterozygote deficiencies at two loci (PGM * and EST-2 *) in the smallest size class. This suggests a cyclic selection which affects larvae and adults differentially. The data revealed little differentiation among populations at the different localities, despite the short larval duration of D. aruanus; this suggests that larval duration is not the main factor presently affecting genetic structure in an insular model. Correspondence to: S. Planes at the Université de Perpignan  相似文献   

18.
Individuals of Mytilus edulis of the same age (ca 2 months) were collected as spat from natural populations. Relative growth rates were determined among individuals differing in heterozygosity at five enzyme loci. Growth rate was positively correlated with individual heterozygosity and each of the five loci contributed about equally to the relatinship. More heterozygous individuals also achieved more uniform average growth rates. Although there was a deficiency of heterozygotes at each locus, relative to Hardy-Weinberg expectations, the magnitude of the deficiency, measured as FIS, was less among faster growing mussels. Our results conform closely with those of Zouros et al. (1980) on the American oyster. We conclude that the relationship between multiple locus heterozygosity and growth rate is one that is general to a diversity of outbreeding plant and animal populations. Other studies indicate that this relationship is due to a greater average metabolic efficiency of more heterozygous individuals. This relationship does not emerge from experimental designs in which there has been limited genetic sampling of the natural genetic variation.  相似文献   

19.
The nurse shark, Ginglymostoma cirratum, inhabits shallow, tropical, and subtropical waters in the Atlantic and the eastern Pacific. Unlike many other species of sharks, nurse sharks are remarkably sedentary. We assayed the mitochondrial control region and eight microsatellite loci from individuals collected primarily in the western Atlantic to estimate the degree of population subdivision. Two individuals from the eastern Atlantic and one from the Pacific coast of Panama also were genotyped. Overall, the mtDNA haplotype (h = 48 ± 5%) and nucleotide (π = 0.08 ± 0.06%) diversities were low. The microsatellite data mirror the mitochondrial results with the average number of alleles ([`(N)]A \bar{N}_{A}  = 9) and observed heterozygosity ([`(H)]O \bar{H}_{O}  = 0.58) both low. The low levels of diversity seen in both the mtDNA and the microsatellite may be due to historical sea level fluctuations and concomitant loss of shallow water habitat. Eight of the 10 pair-wise western Atlantic F ST estimates for mtDNA indicated significant genetic subdivision. Pair-wise F ST values for the microsatellite loci indicated a similar pattern as the mtDNA. The western Atlantic population of nurse sharks is genetically subdivided with the strongest separation seen between the offshore islands and mainland Brazil, likely due to deep water acting as a barrier to dispersal. The eastern and western Atlantic populations were closely related. The eastern Pacific individual is quite different from Atlantic individuals and may be a cryptic, sister species.  相似文献   

20.
Squids of the genus Illex are representative of the family Ommastrephidae and account for 65% of the world’s cephalopod captures. Illex is formed by four taxa distributed throughout the Atlantic Ocean (I. argentinus, I. coindetii, I. illecebrosus and I. oxygonius), whose identification and phylogenetic relationships based on morphological characters remain controversial. Thirty-seven enzyme-coding loci were analysed in 230 individuals from seven populations of Illex and ten specimens of Todaropsis eblanae, which were used as the outgroup. Two to four enzyme loci (ALPDH*, IDHP-1*, MEP* and SOD*) were diagnostic among Illex species depending on the species-pair comparison. Individuals morphologically identified as I. oxygonius were also found genetically distinct, which proves the taxonomic validity of this species. No significant intraspecific genetic heterogeneity was detected within Illex argentinus, I. coindetii and I. illecebrosus (Mean G ST= 0.011, 0.003, 0.017, respectively). I. illecebrosus and I. oxygonius were shown as sister species with a close relationship to I. argentinus, whereas I. coindetii formed a different lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号