首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioreactor landfills: experimental and field results   总被引:28,自引:0,他引:28  
Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation and nutrient balance on the rate of municipal solid waste (MSW) biodegradation. Higher rates of MSW biodegradation eventually cause a reduction of the contaminant life span of the landfill and decrease in the cost of long term monitoring. The study indicated that the smaller the size of the MSW the faster the biodegradation rate of the waste. In addition, the paper presents the results of leachate recirculation on solid waste biodegradation in a full-scale landfill site, which is located in Nepean, Ontario, Canada. The leachate was recirculated into the landfilled solid waste for 8 years through infiltration lagoons. Similar results to those obtained in the laboratory scale experiments were noted. The average pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale, however, the pH value was in the range of 7-8 after 2 years of leachate recirculation. The concentration of chloride remained fairly constant at about 1000 mg/l during the leachate recirculation period. A decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was observed. Recovery of landfill air space was also noted because of the enhanced subsidence and decomposition of the solid waste.  相似文献   

2.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

3.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

4.
The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.  相似文献   

5.
This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period.  相似文献   

6.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

7.
Landfill leachates sampled during and after an accidental landfill fire were analysed and the levels of selected metals and chemical compounds compared to those occurring in the leachate under normal conditions. The fire at the landfill site was put out by excavation and cooling by use of water. The investigation during the fire and fire fight revealed a moderate increase in the level of nitrogen and also in pH and conductivity. Heavy metals and COD in the leachate showed considerably increased levels. In general, the determined variables appeared to normalise within one week after the fire was extinguished. It can be concluded that landfill fires extinguished by excavation may lead to elevated leachate levels of especially COD and heavy metals, but that this is only a short-term effect.  相似文献   

8.
Management of landfill emissions, i.e., landfill gas (LFG) and landfill leachate, is an important and resource-intensive task. A long-term demonstration pilot, consisting of landfill simulation reactors (LSRs), was used to study the impact of temperature and the applied liquid/solid ratio (L/S ratio) on landfill emissions, characteristics, and trends. This pilot has already run for more than 1000 days since the end of 2004 and will continue to run for some time. The degradation of waste at different temperatures has impacts on the overall degradation degree and on the length of post-closure care required. Higher temperatures accelerated the degradation, but also resulted in higher leachate chemical oxygen demand (COD) and ammonia concentrations, which prolong the aftercare period. Meanwhile, at a given stabilization degree [e.g., 70 l gas/kg waste (dry)], the total leached nitrogen under psychrophilic conditions was 3.5 times that under mesophilic/thermophilic conditions, which resulted in a higher required effort for leachate treatment. The impact of L/S ratio or simulated annual L/S rates was also evaluated. The results show the significance of efficiently obtaining the targeted L/S ratio in order to achieve low landfill emission potential.  相似文献   

9.
Treatment of municipal solid waste (MSW) landfill leachate generally results in low percentages of nutrient removal due to the high concentration and accumulation of refractory compounds. For this reason, individual physical, chemical and biological processes have been used for the treatment of raw landfill leachate and sometimes for the mixture of domestic wastewater and landfill leachate. In this work, the possibility of treating landfill leachate was tested in a bench-scale pilot plant by a two-step method combining adsorption and coagulation-flocculation. Zeolite synthesized from coal fly ash, a by-product of coal-fired power stations, was used in this study both as a decantation aid reagent and as an adsorbent of COD and NH4-N. The coagulation-flocculation step was performed by the use of aluminium sulphate and a polyelectrolyte (ACTIPOL A-401). The leachate was collected directly from a storage unit of the organic fraction of MSW, before it was composted. For this reason the raw leachate was diluted before treatment. The sludge was recirculated to enhance the removal efficiency of nutrients as well as to optimize flocculant saving and to decrease sludge production. The results showed that it is possible to remove 43%, 53% and 82% of COD, NH4-N, and suspended solids, respectively. Therefore, this method may be an alternative for ammonium removal, as well as a suitable pre- or post-treatment step, in combination with other processes in order to meet regulatory limits.  相似文献   

10.
Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.  相似文献   

11.
Uncontrolled leachate emissions are one of the key factors in the environmental impact of municipal solid waste (MSW) landfills. The concentration of ammonium, given the anaerobic conditions in traditional landfills, can remain significantly high for a very long period of time, as degradation does not take place and volatilisation is not significant (the pH is not high enough to considerably shift the equilibrium towards un-ionised ammonia). Recent years have witnessed a continuous enhancement of landfill technology in order to minimize uncontrolled emissions into the environment; bottom lining systems have been improved and more attention has been devoted to the study of the attenuation of the different chemicals in leachate in case of migration through the mineral barrier. Different natural materials have been considered for use as components of landfill liners in the last years and tested in order to evaluate the performance of the different alternatives. Among those materials, bentonite is often used, coupled with other materials in two different ways: in addition to in situ soil or in geocomposite clay liner (GCL). A lab-scale test was carried out in order to further investigate the influence of bentonite on the attenuation of ammonium in leachate passing through a landfill liner. Two different tests were conducted: a standardized batch test with pulverized bentonite and a batch test with compacted bentonite. The latter was proposed in order to better simulate the real conditions in a landfill liner. The two tests produced values for the partition coefficient K(d) higher than the average measured for other natural materials usually utilized as components of landfill liners. Moreover, the two tests showed similar results, thus providing a further validation of the suitability of the standard batch test with pulverized bentonite. A thorough knowledge of attenuation processes of ammonium in landfill liners is the basis for the application of risk analysis models for the evaluation of the failure of bottom liners or their components.  相似文献   

12.
通过对一例垃圾焚烧发电厂渗滤液处理站污泥进行鉴定,表明该部分污泥不属于危险固废,可以纳入焚烧炉与生活垃圾一起处理.鉴别结果为促进固体废物循环利用及同类企业合理处置渗滤液处理站污泥提供了借鉴.  相似文献   

13.
Open waste dump systems are still widely used in Indonesia. The Jatibarang landfill receives 650-700 tons of municipal waste per day from the city of Semarang, Central Java. Some of the leachate from the landfill flows via several natural and collection ponds to a nearby river. The objectives of the study were to identify seasonal landfill leachate characteristics in this surface water and to determine the occurrence of natural attenuation, in particular the potential for biodegradation, along the flow path. Monthly measurements of general landfill leachate parameters, organic matter-related factors and redox-related components revealed that leachate composition was influenced by seasonal precipitation. In the dry season, electrical conductivity and concentrations of BOD, COD, N-organic matter, ammonia, sulphate and calcium were significantly higher (1.1-2.3 fold) than during the wet season. Dilution was the major natural attenuation process acting on leachate. Heavy metals had the highest impact on river water quality. Between the landfill and the river, a fivefold dilution occurred during the dry season due to active springwater infiltration, while rainwater led to a twofold dilution in the wet season. Residence time of leachate in the surface leachate collection system was less than 70 days. Field measurements and laboratory experiments showed that during this period hardly any biodegradation of organic matter and ammonia occurred (less than 25%). However, the potential for biodegradation of organic matter and ammonia was clearly revealed during 700 days of incubation of leachate in the laboratory (over 65%). If the residence time of leachate discharge can be increased to allow for biodegradation processes and precipitation reactions, the polluting effects of leachate on the river can be diminished.  相似文献   

14.
To simulate a submerged combustion evaporation (SCE) process under laboratory conditions, this study conducted three kinds of indirect-heating evaporation experiments, including normal evaporation, vacuum evaporation, and gas-carrying evaporation experiments on mature municipal solid waste (MSW) landfill leachate. The results showed that the organic concentrations in terms of COD in condensates were always very high at the beginning, then decreased rapidly, and stabilized at a low level, which suggests that only the forepart of vapors need to be safely treated to control the discharge of organic pollutants. This study applied the process in developing a two-stage SCE system, which has been implemented for the treatment of biologically pretreated and concentrated leachate from Membrane Bioreactor (MBR) and Reverse Osmosis (RO) combined process in the Beishenshu MSW Landfill, Beijing, China. The result shows that the two-stage SCE system can successfully further concentrate refractory organic matter in concentrated leachate and remove volatile organics from the vapor.  相似文献   

15.
This paper presents findings from long-term monitoring studies performed at full-scale municipal solid waste landfill facilities with leachate recirculation. Data from two facilities at a landfill site in Delaware, USA were evaluated as part of this study: (1) Area A/B landfill cells; and (2) two test cells (one with leachate recirculation and one control cell). Data from Area A/B were compared with proposed waste stability criteria for leachate quality, landfill gas production, and landfill settlement. Data from the test cells were directly compared with each other. Overall, the trends at Area A/B pointed to the positive effects (i.e., more rapid waste degradation) that may be realized through increasing moisture availability in a landfill relative to the reported behavior of more traditionally operated (i.e., drier) landfills. Some significant behavioral differences between the two test cells were evident, including dissimilarities in total landfill gas production quantity and the extent of waste degradation observed in recovered time capsules. Differences in leachate quality were not as dramatic as anticipated, probably because the efficiency of the leachate recirculation system at distributing leachate throughout the waste body in the recirculation cell was low.  相似文献   

16.
Landfills have been the dominant alternative for disposal of solid waste and there are tens of thousands of closed landfills throughout the world that require a long-term management strategy. In contrast to approaches based on time or target values, this paper describes a performance-based methodology for evaluation of post-closure care (PCC). Using the methodology, critical components of PCC at a landfill, including leachate and gas management, groundwater monitoring and cover integrity, are considered to determine whether a landfill meets defined conditions for functional stability and can transition from regulated PCC to a post-regulatory custodial care program representing de minimus care activities only. The methodology is predicated on understanding the biological, chemical, and physical behavior of a landfill and the presence of sufficient data to verify expected trends in landfill behavior. If an evaluation suggests that a change can be made to PCC, the landfill owner must perform confirmation monitoring and then surveillance monitoring at a decreasing frequency to verify that the change is protective of human health and the environment. A hypothetical case study showed that using the methodology to evaluate site-specific PCC requirements could result in increased environmental protection at comparable cost by spending available funds where they are most needed.  相似文献   

17.
A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.  相似文献   

18.
We experimentally studied the occurrence of spontaneous self-heating of sludge after drying, to understand its nature, course and remediation. The sludge originates from primary and biological treatment of both municipal and industrial wastewater, the latter largely dominant (approx. 90% total organic carbon, mainly from local tanneries). Dried sludge is collected into big–bags (approx. 1.5 m3) and landfilled in a dedicated site. After several years of regular operation of the landfill, without any management or environmental issue, indications of local warming emerged, together with smoke and smelling emissions, and local subsidence. During a two year monitoring activity, temperatures locally as high as 80 °C have been detected, 6–10 m deep. Experiments were carried out on large quantities of dried sludge (~1 t), monitoring the temperature of the samples over long periods of time (months), aiming to reproduce the spontaneous self-heating, under different conditions, to spot enhancing and damping factors. Results demonstrate that air is a key factor to trigger and modulate the self-heating. Water, in addition to air, supports and emphasizes the heating. Unusual drying operation was found to affect dramatically the self-heating activity, up to spontaneous combustion, while ordinary drying conditions yield a sludge with a moderate self-heating inclination. Temperature values as well as heating time scales suggest that the exothermic process nature is mainly chemical and physical, while microbiological activity might be a co-factor.  相似文献   

19.
Pilot-scale experiment on anaerobic bioreactor landfills in China   总被引:1,自引:0,他引:1  
Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.  相似文献   

20.
The re-introduction of leachate back into the waste can play an important part in landfill management. It can encourage biodegradation by raising the water content and transporting bacteria, nutrients and waste products. It also enables leachate to be stored within the body of the landfill, for example to help minimise temporal variations in the load on a leachate treatment plant. It is helpful for a landfill operator to be able to estimate the rate at which the landfill can accept leachate (the maximum infiltration or injection rate), the storage capacity of the landfill and the leachate retention time. This paper discusses some of the insights obtained from the development and application of a simple conceptual model of leachate recirculation that can be used to estimate key parameter values on the basis of the hydraulic properties of the waste. The model is described, partly validated against a more rigorous numerical analysis, and then used to interpret data obtained from field tests on a real site. The shortcomings of the model in its current form are discussed, and suggestions are made as to how these might be addressed in the context of developing the model as a design tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号