首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies of leachate-induced ecotoxicity have focused on crude samples, while little attention has been given to changes in biotoxicity resulting from the environmental behavior of landfill leachate. Therefore, we set up a soil column to simulate the underground penetration of leachate into the soil layer, define the rules of migration and transformation of leachate pollutants, and determine the variation in toxicity of landfill leachate during penetration. The results demonstrated that: (1) landfill leachate inhibited the growth and chlorophyll levels, elevated the levels of lipid peroxidation and protein oxidation, and stimulated the antioxidant enzyme activities of barley seedlings. The effects generally displayed a peak value at 12–24 cm, slowly declined at 36–48 cm, and then rapidly decreased with penetrating distance in the column. (2) Statistical correlation analysis of the properties of leachate and the observed biotoxic effects revealed that COD, conductivity and heavy metals (esp. Ni, Mn, Cd) were positively correlated with variations in biotoxicity. (3) The microbial activity of outflowing leachate sampled from the 48 cm port was significantly higher than the activity from succedent ports, and the types of contaminants increased in the leachate outflowing from the same port, implying that microbial behaviors near the 48 cm port could be used to partially evaluate variations in the composition and biotoxicity of landfill leachate. Taken together, the above results illustrate the polluting characteristics of landfill leachate when penetrating a soil column and provide guidance for pollution control and risk assessment of landfill leachate.  相似文献   

2.
The effect of leachate irrigation on methanotrophic activity in sandy loam-based landfill cover soil with vegetation was investigated. Laboratory-scale experiments were conducted to investigate the methane oxidation reaction in cover soil with and without plants (tropical grass). The methane oxidation rate in soil columns was monitored during leachate application at different organic concentrations and using different irrigation patterns. The results showed that the growth of plants on the final cover layer of landfill was promoted when optimal supplement nutrients were provided through leachate irrigation. The vegetation also helped to promote methane oxidation in soil, whereas leachate application helped increase the methane oxidation rate in nonvegetated cover soil. Intermittent application of leachate (once every 4 days) improved the methane oxidation activity as compared to daily application. Nevertheless, the adverse effects of organic overloading on methane oxidation rate and plant growth were also observed.  相似文献   

3.
The effects of varying concentrations of landfill leachate on the growth, frond area, chlorophyll content and fluorescence of four strains of Lemna minor were assessed. Growth fluorescence and frond chlorophyll content decreased after seven days exposure to leachate, although responses differed between the strains and end parameters. A L. minor bioassay was used to assess leachate toxicity and the effectiveness of a constructed wetland treatment system and pre-treatment aeration and settlement in reducing toxicity. Pre-treatments were found to significantly reduce toxicity, so their incorporation in any treatment system may increase pollutant stripping.  相似文献   

4.
Electrochemical oxidation for landfill leachate treatment   总被引:10,自引:0,他引:10  
This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.  相似文献   

5.
Two microalgae, Chlorella pyrenoidosa and Chlamydomonas snowiae, were isolated from a high ammonia leachate pond in Li Keng Landfill, Guangzhou, China. Their growth and nutrient removal rates were determined in a serial dilution of landfill leachate under laboratory conditions, and their growth rates were compared with that of a C. pyrenoidosa strain isolated from a clean river. The results indicated the growth of all three algae was inhibited by high leachate concentrations, and the inhibition appears linked to high ammonia (ammoniacal-N670mgL(-1)). Significant amounts of ammoniacal-N, ortho-P and COD in the leachate were removed by the algae, with a positive correlation between algal growth and nutrient consumption. Not enough data are available to conclude that one strain was less inhibited by ammoniacal nitrogen or more effective at treating it. Phytotoxicity of leachate was reduced after algal growth, as demonstrated by a seed germination experiment with Brassica chinensis. The germination rates in 10%, 30% and 50% concentrations of algal-treated leachate were significantly higher than those in the same concentration but algal-free leachate.  相似文献   

6.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   

7.
Open waste dump systems are still widely used in Indonesia. The Jatibarang landfill receives 650-700 tons of municipal waste per day from the city of Semarang, Central Java. Some of the leachate from the landfill flows via several natural and collection ponds to a nearby river. The objectives of the study were to identify seasonal landfill leachate characteristics in this surface water and to determine the occurrence of natural attenuation, in particular the potential for biodegradation, along the flow path. Monthly measurements of general landfill leachate parameters, organic matter-related factors and redox-related components revealed that leachate composition was influenced by seasonal precipitation. In the dry season, electrical conductivity and concentrations of BOD, COD, N-organic matter, ammonia, sulphate and calcium were significantly higher (1.1-2.3 fold) than during the wet season. Dilution was the major natural attenuation process acting on leachate. Heavy metals had the highest impact on river water quality. Between the landfill and the river, a fivefold dilution occurred during the dry season due to active springwater infiltration, while rainwater led to a twofold dilution in the wet season. Residence time of leachate in the surface leachate collection system was less than 70 days. Field measurements and laboratory experiments showed that during this period hardly any biodegradation of organic matter and ammonia occurred (less than 25%). However, the potential for biodegradation of organic matter and ammonia was clearly revealed during 700 days of incubation of leachate in the laboratory (over 65%). If the residence time of leachate discharge can be increased to allow for biodegradation processes and precipitation reactions, the polluting effects of leachate on the river can be diminished.  相似文献   

8.
Because of low investment and operational costs, interest is increasing in the use of willow plants in landfill leachate disposal. Toxic effects of leachate on the plants should be avoided in the initial period of growth and phytotoxicological testing may be helpful to select appropriate leachate dose rates. The aim of this study was to determine the phytotoxicity of landfill leachate on young willow (Salix amygdalina L.) cuttings, as a criterion for dose rate selection in the early phase of growth. Over a test period of 6 weeks plants were exposed to six concentrations of landfill leachate solutions (0%; 6.25%; 12.5%; 25%; 50% and 100%), under two different regimes. In regime A willow plants were cultivated in leachate solution from the beginning, whereas in regime B they were grown initially in clean water for 4 weeks, after which the water was exchanged for leachate solutions. The lowest effective concentration causing toxic effects (LOEC) was calculated (p < 0.05). In regime A LOEC was between 5.44% and 6.50% of leachate concentration, but slightly higher in regime B (5.32–6.59%). Willow plants were able to survive in landfill leachate solutions with electrical conductivity (EC) values up to 5.0 mS/cm in regime A, whereas in regime B plants were killed when EC exceeded 3.0 mS/cm. This indicates an ability of willow plants to tolerate higher strengths of landfill leachate if they are cultivated in such concentrations from the beginning.  相似文献   

9.
This study characterized the organic matter and heavy metals in the leachate from two typical municipal solid waste (MSW) sanitary landfills in China, the recently established (3-year-old) Liulitun landfill and the mature (11-year-old) Beishenshu landfill, using a size fractionation procedure. The organic matter of all raw and treated leachate samples primarily existed in a truly-dissolved fraction with an apparent molecular weight (AMW) of <1 kDa, and its percentage decreased with an increase in overall AMW. The leachate from the newer landfill had a higher percentage of truly-dissolved organic matter. After anaerobic treatment, this leachate had a similar size fraction of organic matter to that seen for the raw leachate of the mature landfill. Biochemical processes had different removal efficiencies for various types of AMW organic matter, and the concentration of moderate AMW organic matter appeared to increase throughout these processes. Most of the heavy metals existed in a colloidal fraction (AMW >1 kDa and particle size <0.45 μm). The behaviors of different species of heavy metals had large variations. The size fractions of heavy metal species were significantly affected by treatment processes and landfill age, except for Zn. The concentration ratio of heavy metals to organic matter was maximal in the colloidal fraction and showed an inverse change to that seen for organic matter concentration changes caused by biochemical processes. Consequently, the pollution levels of heavy metals were substantially increased by treatment processes, although their concentrations decreased.  相似文献   

10.
Low-cost treatment of landfill leachate using peat   总被引:6,自引:0,他引:6  
The EU Landfill Directive obliges member states to collect and treat leachate from landfill sites. In regions of high population density, this is commonly achieved through discharge of the leachate to the municipal sewerage system. In Ireland, rural landfills can be a long distance from a suitable sewerage system, resulting in high transportation costs. On-site treatment systems, when used elsewhere, are mainly aerobic treatment systems, which are costly to construct and operate. There is a particular need for low-cost, low-maintenance leachate treatment systems for small low-income landfills, and for closed landfills, where long-term running costs of aerobic systems may be unsustainable. In 1989, this research work was initiated to investigate the use of local peat for the treatment of leachate from a small rural landfill site. In 1997, following the award of grant-aid under the EU LIFE Programme, a full-scale leachate treatment plant was constructed, using local un-drained peat as the treatment medium. When the LIFE Project ended in February 2001, leachate treatment research continued at the site using a pre-treated peat as the treatment medium. The treatment levels achieved using both types of peat are discussed in this paper. It is concluded that landfill leachate may be successfully treated using a low-cost peat bed to achieve almost 100% removal of both BOD and ammonia.  相似文献   

11.
As the stabilization criteria for landfill sites, only chemical criteria for the leachate discharges from the landfill sites have been used in Japan and many other countries. Recently, chemical oxidation has been developed as a method for the early-stabilization of landfills. However, by-products that are difficult to detect by chemical analysis can be produced by this method. Therefore, toxicity tests are useful tools for detecting the changes of leachate quality after application of this method. The heat source in the A landfill was analyzed by organic position inquiry technology, and ozone-treated leachate was sprayed back to the heat source in the landfill. Toxicity changes of the leachate after the spray were monitored using Microtoxtrade mark, ToxScreen-II, and DaphTox tests. The hardly-degradable organic matter was efficiently removed and toxicities of the leachate in the heat source decreased after the application. These toxicity results were significantly related to chemical oxygen demand (COD) changes. Thus, it was concluded that the toxicity tests were effective for monitoring the leachate quality after applying the chemical oxidation method for landfill stabilization, and its incorporation to establish the criteria for early-stabilization of landfill sites needs to be considered.  相似文献   

12.
This paper investigated the durability and mechanical properties of landfill leachate collection HDPE pipes which had been made of different weight percent amounts of virgin and reprocessable HDPE compounds (VC and RC). Durability is reported base on the chemical properties, obtained through oxidative induction time (OIT) and melt flow index (MFI) measurements, at the temperature of 50 °C and over a period of 12 months immersion in a synthetic leachate. Mechanical properties are also described according to tensile and pressure tests which had been conducted on the pipes samples. All of the factors were examined had been affected by the addition of RC, but for the special combination the antioxidant depletion was significantly affected by the experimental aging condition and no important changes had been observed in the other pipe properties. The results from OIT tests indicate that the rate of antioxidant depletion is reduced by an increase in the weight percent amounts of RC, during the experimental aging condition. This reduction is probably attributed to the extraction of antioxidants from RC in their recovery process. Finally, although these results are related to the particular HDPE compound, antioxidant formulation and condition examined, but it can be said that the use of clean own reprocessable material for the production of landfill leachate pipes shall be permitted without limitations.  相似文献   

13.
Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.  相似文献   

14.
Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L−1. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L−1 h−1) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.  相似文献   

15.
This study aims to characterize the leachate and to investigate the tropical climatic influence on leachate characteristics of lysimeter studies under different seasonal variations at KUET campus, Bangladesh. Three different situations of landfill were considered here as well as both the open dump lysimeter-A having a base liner and sanitary landfill lysimeter-B and C at two different types of cap liner were simulated. The leachate characteristics, leachate generation and climatic influence parameter had been continually monitored since June 2008 to May 2010, these periods cover both the dry and rainy season. The leachate generation had followed the rainfall pattern and the open dump lysimeter-A without top cover was recorded to have highest leachate generation. Moreover, the open dump lysimeter-A had lower total kjeldahl nitrogen (TKN), ammonia nitrogen (NH(4)-N) and TKN load, while both the COD concentration and load was higher compared with sanitary landfill lysimeter-B and C. In addition, sanitary landfill lysimeter-B, not only had lowest leachate generation, but also produces reasonable low COD concentration and load compared with open dump lysimeter-A. Result reveals that lysimeter operational mode had direct effect on leachate quality. Finally, it can be concluded that the knowledge of leachate quality will be useful in planning and providing remedial measures of proper liner system in sanitary landfill design and leachate treatment.  相似文献   

16.
The main purpose of this research is to clarify and compare the mechanism of waste stabilization by a recirculatory semi-aerobic landfill with the aeration system. Our research is proposing the semi-aerobic landfill system for developing countries because of the simple and low-cost technology for the final disposal. Moreover, this system with leachate recirculation can be a more effective system for waste stabilization because of the improvement of leachate quality as an organic pollutant and, also, nitrogen removal. In this research, five different systems of landfill (Ae: aerobic, An: anaerobic, Se: semi-aerobic, SeR: recirculatory semi-aerobic landfill, and SeRA: recirculatory semi-aerobic landfill with aeration system) are compared with lysimeters which are 1 m high with a diameter of 0.3 m. The results of the leachate quality shows that the leachate treatment effect of the SeRA system can be observed to be as high as the Ae system. To determine the mechanism of this process, all lysimeters are dismantled after 1,100 days in the experimental period and the waste composition, the dissolution test, the mass balance of carbon and nitrogen, the determination of bacterial counts, etc., were analyzed. In this research, it was proven that the SeRA system has an optimal leachate treatment effect that is the same as the Ae system. And, from the results of the mass balance of carbon and nitrogen, the SeR and SeRA systems show higher waste stabilization effectiveness and nitrogen removal than the other systems. Moreover, the number of the aerobic bacteria can be observed to be higher in the SeR and SeRA systems. To determine these results, the waste stabilization mechanism is considered by the results of leachate quality, the mass balance of carbon and nitrogen, and, also, the bacterial numbers.  相似文献   

17.
The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.  相似文献   

18.
Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD5, NH4–N, NO2–N, NO3–N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation–reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application.  相似文献   

19.
Landfill processes were simulated in laboratory-scale bioreactors--lysimeters. The changes in leachate characteristics as well as the influence of advanced oxidation processes (AOPs) on the processes taking place in the sanitary landfill were investigated. Lysimeters were filled with material simulating municipal waste in the city of Lodz, Poland. Compost in the amount of 30% w/w and the methanogens inoculum were added in order to enhance development of a methanogenic phase. The leachate produced in lysimeters was recirculated. In order to investigate the influence of AOPs implementation on processes taking place in landfills two runs in lysimeters were performed, each lasting about 250 days. The leachate composition and biogas composition and production changes showed trends that confirmed that the bench-scale lysimeters appeared suitable to simulate processes taking place in the landfill. The application of AOPs to the leachate recirculated into the lysimeters did not bring about unequivocally positive effects. The ozonation of the leachate, implemented at the beginning of the methanogenic phase, caused slight acceleration (about 2 weeks) of the biodegradation, whereas employment of H2O2/UV led to the inhibition of anaerobic processes.  相似文献   

20.
Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号