首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants.Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180–580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line.  相似文献   

2.
Pyrolysis of large printed circuit board (PCB) waste particle was conducted on a specially designed laboratory-scale thermobalance (Macro-TG) with sample loading of 30 g under dynamic nitrogen atmosphere. The effects of heating rate (10, 15, 20 and 25 °C min?1) and particle size (1 mm × 1 mm, 5 mm × 5 mm, 10 mm × 10 mm and 10 mm × 20 mm) were examined. To compare the different decomposition behavior of fine and large one, the thermal decomposition of PCB waste powder (approximately 5 mg) was also performed on a thermogravimetric analyzer (common TG) under various heating rates (10, 15, 20 and 40 °C min?1) and particle size ranges (0.198–0.165 mm, 0.165–0.074 mm, 0.074–0.055 mm and 0.055–0.047 mm). Experimental results show that large particle has a pyrolysis reaction retardancy compared to fine one. The distributed activation energy model was used to study the pyrolysis kinetics. It was found that during pyrolysis process, values of frequency factor (k0) changed with different activation energy (E) values. On common TG, the E values range from 156.95 to 319.37 kJ mol?1 and k0 values range from 2.67 × 1013 to 2.24 × 1027 s?1. While, on Macro-TG, the range of E was 31.48–41.26 kJ mol?1 and of the frequency factor was 19.80–202.67 s?1.  相似文献   

3.
By thermogravimetric analysis (TGA) study, the characteristics of oxygen-enriched air combustion of paper mill sludge were investigated. Experiments on oxidative of paper mill sludge were performed under different atmospheres at 20 °C/min. There are two distinct decomposition processes were observed from the obtained thermogravimetric curves. One of them centered on 320–350 °C with a weight loss of 50%, the second centered on 780–795 °C with a weight of loss 30%. Shift of oxygen concentration have some influences on decomposition processes, and then the processes of paper mill sludge combustion in oxygen-enriched air can be divided into three stages. The kinetic parameters observed by direct non-linear regressions. At the fixed carbon combustion stage, when oxygen concentration from 20 to 80 vol.%, the apparent activation energy is increased from 52.30 to 123.16 kJ/mol, the reaction order of all runs are around 1.  相似文献   

4.
Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H2 and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m3 to 9.10 MJ/N m3 with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.  相似文献   

5.
Time domain reflectometry (TDR) is a prospective measurement technology for moisture content of sewage sludge composting material; however, a significant dependence upon temperature has been observed. The objective of this study was to assess the impacts of temperature upon moisture content measurement and determine if TDR could be used to monitor moisture content in sewage sludge compost across a range of temperatures. We also investigated the combined effects of temperature and conductivity on moisture content measurement. The results revealed that the moisture content of composting material could be determined by TDR using coated probes, even when the measured material had a moisture content of 0.581 cm3 cm?3, temperature of 70 °C and conductivity of 4.32 mS cm?1. TDR probes were calibrated as a function of dielectric properties that included temperature effects. When the bulk temperature varied from 20 °C to 70 °C, composting material with 0.10–0.70 cm3 cm?3 moisture content could be measured by TDR using coated probes, and calibrations based on different temperatures minimized the errors.  相似文献   

6.
Paper sludge is a waste product from the paper and pulp manufacturing industry that is generally disposed of in landfills. Pyrolysis of paper sludge can potentially provide an option for managing this waste by thermal conversion to higher calorific value fuels, bio-gas, bio-oils and charcoal. This work investigates the properties of paper sludge during pyrolysis and energy required to perform thermal conversion. The products of paper sludge pyrolysis were also investigated to determine their properties and potential energy value. The dominant volatile species of paper sludge pyrolysis at 10 °C/min were found to be CO and CO2, contributing to almost 25% of the paper sludge dry weight loss at 500 °C. The hydrocarbons (CH4, C2H4, C2H6) and hydrogen contributed to only 1% of the total weight loss. The bio-oils collected at 500 °C were primarily comprised of organic acids with the major contribution being linoleic acid, 2,4-decadienal acid and oleic acid. The high acidic content indicates that in order to convert the paper sludge bio-oil to bio-diesel or petrochemicals, further upgrading would be necessary. The charcoal produced at 500 °C had a calorific value of 13.3 MJ/kg.  相似文献   

7.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   

8.
The treatment and disposal of sewage sludge are significant environmental problems in China. The reuse of sewage sludge for fuel could be an effective solution. The aim of this study was to characterize the behavior of sludge-derived fuel during combustion by a thermogravimetric method. The combustion profiles obtained showed four obvious weight loss regions. The results of dynamics analysis showed that first-order reactions together with Arrhenius’ law explained reasonably well the different stages of weight loss in the samples. Three temperature regions (162–327 °C, 367–445 °C, and 559–653 °C for sawdust and 162–286 °C, 343–532 °C, and 609–653 °C for coal) in each derivative thermogravimetry (DTG) curve corresponded well with the Arrhenius equation. The reactivity of sludge was lower than that of samples containing sawdust, but higher than that of coal-containing samples. These data demonstrate that sludge-derived fuel has better combustion characteristics than sludge, sawdust, or coal.  相似文献   

9.
A work applied response surface methodology coupled with Box–Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470–505 °C, a heating rate of 40 °C/min, and a carrier gas flow rate range of 115–140 mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis.  相似文献   

10.
This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 °C for 10–240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 °C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.  相似文献   

11.
12.
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.  相似文献   

13.
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm3 reactor, swept with 1 L min?1 N2, at 500 °C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33–40 MJ kg?1). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO2; their HHV is in the range of 18–46 MJ kg?1. The amount of COCO2 increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.  相似文献   

14.
In this research a gas–liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas–liquid fluidized bed reactor was running at 280–320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47–0.85 Nm3 kg?1 for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas–liquid fluidized bed reactor for dechlorination.  相似文献   

15.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

16.
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80 °C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45 °C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil–toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80 °C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.  相似文献   

17.
Biomass is an important renewable and sustainable source of energy. Waste products from biomass are considered as attractive feedstocks for the production of fuel. This work deals with the pyrolysis of bean dregs, a biomass waste from soybean processing industry. A technique has been developed to study bean dregs pyrolysis by in situ visualization of bean dregs transformation in a quartz capillary under a microscope using a charge-coupled device (CCD) camera monitoring system. The technique enables us to observe directly the processes and temperatures of bean dregs transformation during pyrolysis. In situ visualization of reaction revealed that how oily liquids are generated and expulsed concurrently from bean dregs during pyrolysis. Pyrolysis characteristics were investigated under a highly purified N2 atmosphere using a thermogravimetric analyzer from room temperature to 800 °C at different heating rates of 10, 30 and 50 °C/min. The results showed that three stages appeared in this thermal degradation process. The initial decomposition temperature and the peak shifted towards higher temperature with an increase in heating rate. Kinetic parameters in terms of apparent activation energy and pre-exponential factor were determined.  相似文献   

18.
In this work, a product distribution study from thermal degradation of low-density polyethylene (LDPE) is presented. Thermal degradation of the polymer was investigated under dynamic condition in an inert environment using a thermo-gravimetric analyzer (TGA) coupled with evolved products’ analysis using a gas chromatograph (GC). Fractions evolved at nine different temperatures from 200 to 600 °C were injected into GC for a detailed product analysis. The main objective of the present investigation is to highlight the species-specific evolution profiles of LDPE pyrolyzates (C5–C44) at different stages of its degradation under an inert environment. Pyrograms have been analyzed in terms of amount of different products evolved at various pyrolysis temperatures. Volatile pyrolyzates essentially remain low at low decomposition temperature (200–300 °C) of the polymer, which gradually increase to attain a maximum at maximum decomposition temperature (470 °C) and finally level off at 600 °C. In the mechanistic approach adopted to understand the decomposition mechanism of LDPE, the following reaction types were considered: (a) main chain cleavage to form chain-terminus radicals; (b) intramolecular hydrogen transfer to generate internal radicals; (c) intermolecular hydrogen transfer to form both volatile products and radicals; and (d) β-scission to form both volatiles and terminally unsaturated polymer.  相似文献   

19.
We experimentally studied the occurrence of spontaneous self-heating of sludge after drying, to understand its nature, course and remediation. The sludge originates from primary and biological treatment of both municipal and industrial wastewater, the latter largely dominant (approx. 90% total organic carbon, mainly from local tanneries). Dried sludge is collected into big–bags (approx. 1.5 m3) and landfilled in a dedicated site. After several years of regular operation of the landfill, without any management or environmental issue, indications of local warming emerged, together with smoke and smelling emissions, and local subsidence. During a two year monitoring activity, temperatures locally as high as 80 °C have been detected, 6–10 m deep. Experiments were carried out on large quantities of dried sludge (~1 t), monitoring the temperature of the samples over long periods of time (months), aiming to reproduce the spontaneous self-heating, under different conditions, to spot enhancing and damping factors. Results demonstrate that air is a key factor to trigger and modulate the self-heating. Water, in addition to air, supports and emphasizes the heating. Unusual drying operation was found to affect dramatically the self-heating activity, up to spontaneous combustion, while ordinary drying conditions yield a sludge with a moderate self-heating inclination. Temperature values as well as heating time scales suggest that the exothermic process nature is mainly chemical and physical, while microbiological activity might be a co-factor.  相似文献   

20.
Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10?10, 2.08 × 10?9 and 6.8 × 10?10 m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m3). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m3) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号