首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The urban solid waste problem has been one of the biggest environmental challenges these days. In this context, developing biocomposites with improved performance by using various sources and wastes has been intensified in the last decades for economic and environmental points of view. In this study, physical behavior, fungal decay and termite attack tests were conducted in laboratory conditions to investigate the performance of composites developed from TetraPak and textile wastes. All the results were compared to standard wood products. The water swelling properties strongly decreased in the manufactured TetraPak composites when compared with the conventional particleboard panels. The fungal decay resistance tests revealed that the stand alone TetraPak based composites were not completely resistant to wood-decaying fungi. A significant amelioration in the decay durability was observed for the manufactured TetraPak composites compared to the standard wood samples. Durability classes were determined according to the criteria given in the European standard (CEN/TS15083-1). Interestingly, the data indicated that the increment of the wool waste proportion in the produced boards lead to a significant enhancement counter the test fungi. The results of termite screening test showed further considerable resistance for whole TetraPak based composites against termites when compared to traditional wood samples. Such panels could be an available alternative without any additives for wood based composite structures and it can be used in a wide range of applications.  相似文献   

2.
In this research, the influence of thermo-mechanical degradation of polypropylene (PP) on water absorption and thickness swelling of beech wood flour–PP composites were studied. For this purpose, a virgin PP was thermo-mechanically degraded by two times extrusion under controlled conditions. The results showed that the melt flow index, water absorption and thickness swelling of PP significantly increase by extrusion and re-extrusion. The virgin PP and degraded polypropylene were compounded with wood flour (at 60% by weight wood flour loading) in a counter-rotating twin-screw extruder in presence or absence of MAPP to produce wood flour–PP composites. From the results, the composites containing recycled PP exhibited higher water absorption and thickness swelling. The use of MAPP decreased water absorption and thickness swelling in composites made of virgin or recycled PP.  相似文献   

3.
Detailed analysis of the effects of recycling process on long-term water absorption, thickness swelling and water desorption behavior of natural fiber polypropylene composites is reported. Composite materials containing polypropylene and wood flour, rice hulls or bagasse fibers were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis and Fourier transform infrared spectroscopy was employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process.  相似文献   

4.
Use of recycled plastic in concrete: a review   总被引:4,自引:1,他引:3  
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.  相似文献   

5.
Recycling today constitutes the most environmentally friendly method of managing wood waste. A large proportion of the wood waste generated consists of used furniture and other constructed wooden items, which are composed mainly of particleboard, a material which can potentially be reused. In the current research, four different hydrothermal treatments were applied in order to recover wood particles from laboratory particleboards and use them in the production of new (recycled) ones. Quality was evaluated by determining the main properties of the original (control) and the recycled boards. Furthermore, the impact of a second recycling process on the properties of recycled particleboards was studied. With the exception of the modulus of elasticity in static bending, all of the mechanical properties of the recycled boards tested decreased in comparison with the control boards. Furthermore, the recycling process had an adverse effect on their hygroscopic properties and a beneficial effect on the formaldehyde content of the recycled boards. The results indicated that when the 1st and 2nd particleboard recycling processes were compared, it was the 2nd recycling process that caused the strongest deterioration in the quality of the recycled boards. Further research is needed in order to explain the causes of the recycled board quality falloff and also to determine the factors in the recycling process that influence the quality degradation of the recycled boards.  相似文献   

6.
Agricultural wastes, oil palm trunk (OPT) veneer and oil palm empty fruit bunch (EFB) mat were used for the preparation of hybridized plywood using 250 and 450 g/m2 of urea formaldehyde (UF) as gluing agent. The mechanical (flexural strength, flexural modulus, screw withdrawal, shear strength), physical (density, water absorption, thickness swelling and delamination) and thermal (TGA) properties of the biocomposites were studied. Images taken with a scanning electron micrograph (SEM) indicated an improvement in the fiber–matrix bonding for the laminated panel glued with 450 g/m2 of UF.  相似文献   

7.
包装垃圾是由废弃的包装物产生的固体垃圾,约占我国城市生活垃圾的1/3,虽然政府进行了必要回收,但仍有1/3以上的塑料、玻璃等包装物没能被有效回收利用,成了填埋场的主要填埋物,造成了环境污染和土地、石油等不可再生资源大量浪费。从回收利用和源头减量两方面提出包装垃圾的应对,一是对包装垃圾按来源、成分等进行详细分类,并建议回收处置方法;二是从制定行业政策方面来减少过度包装和扶持再生资源行业健康发展,有效处置包装垃圾等可再生资源。  相似文献   

8.
The possibility of recycling waste medium density fiberboard (MDF) into wood-cement composites was evaluated. Both new fibers and recycled steam exploded MDF fibers had poor compatibility with cement if no treatment was applied, due to interference of the hydration process by the water soluble components of the fiber. However, this issue was resolved when a rapid hardening process with carbon dioxide injection was adopted. It appears that the rapid carbonation allowed the board to develop considerable strength before the adverse effects of the wood extractives could take effect. After 3-5 min of carbon dioxide injection, the composites reached 22-27% of total carbonation and developed 50-70% of their final (28-day) strength. Composites containing recycled MDF fibers had slightly lower splitting tensile strength and lower tensile toughness properties than those containing new fibers especially at a high fiber/cement ratio. Composites containing recycled MDF fibers also showed lower values of water absorption. Unlike composites cured conventionally, composites cured under CO(2) injection developed higher strength and toughness with increased fiber content. Incorporation of recycled MDF fibers into wood cement composites with CO(2) injection during the production stage presents a viable option for recycling of this difficult to manage waste material.  相似文献   

9.

The utilization of processed rubber and construction waste in lieu of soil as a substrate could improve significantly seismic performance, while addressing the pressing environmental issue of how to reutilize and dispose of, i.e., automotive tires and demolition by-products. In this study, a series of laboratory tests explore the influence of recycled tire waste (RTW) and recycled concrete aggregate (RCA) fine particles on the compressibility parameters of RCA–RTW mixtures. The results revealed that the addition of rubber waste to RCA causes an increase in its compressibility and consolidation index (cv) while prompting a power law decrease in the associated void ratio. It is found that all RCA–RTW mixtures are characterized by higher values of the compression (CC) and swelling (CS) indexes when compared to the pure RCA specimens while presenting a primary and secondary constrained modulus of fewer than 42 MPa and 96 MPa, respectively.

  相似文献   

10.
The manufacturing industry produces a lot of different by-products and waste. In this research, the utilization of different industrial wastes as a part of wood-plastic composites was tested. Limestone waste and carton cutting waste were tested by replacing part of the reinforcing fibers of the composite with these materials. The materials were made with the extrusion process, and they were tested for their mechanical properties, water absorption and thickness swelling. The materials were also viewed with a scanning electron microscope. The results showed that both industrial wastes affected the properties of the composite. Mining waste in the composite improved the moisture properties, impact strength and hardness of the material. Carton cutting waste improved the impact strength remarkably.  相似文献   

11.
Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d?1), 54.6% of total recyclable wastes (51.49 ton d?1) and 68.29% of readily recyclable wastes (41.19 ton d?1). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns.  相似文献   

12.
Reuse of municipal solid wastes incineration fly ashes in concrete mixtures   总被引:7,自引:0,他引:7  
This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.  相似文献   

13.
The present study focuses on the use of solid waste generated by the steel works in Brazil for manufacturing clay-based structural products. The waste sample was characterized regarding chemical composition, X-ray diffraction, particle size, morphology, specific surface and plastic properties. The waste was added in gradual proportions to a kaolinitic clay from zero up to 3 wt.%. Ceramic bodies were formed by vacuum extrusion and fired at 950 degrees C. The physical-mechanical properties (linear shrinkage, water absorption, apparent density and flexural strength) of the resulting clay/solid waste mixtures were determined. In addition, leaching tests were performed according Brazilian Standards as well as a preliminary analysis of gases evolved during the thermal process. It was found that the solid waste is formed by irregular particles, ranging in size from 1 to 500 microm. The test results indicate that solid wastes generated by steel works can be used as filler in construction materials, thereby increasing reuse in an environmentally safe manner.  相似文献   

14.
Events like trade fairs are a complex service activity with a considerable economic, social and environmental impact due, among other factors, to their high level of waste generation. There are few studies of the environmental impact associated with waste generation and typology. An environmental analysis methodology has been developed to characterise the waste associated with the temporary structures used at trade fair events: stands and communal spaces.This methodology has been checked in a pilot test at 6 closed trade fairs in Barcelona, with a range of between 60 and 4400 exhibitors. The methodology developed has made possible to obtain a waste generation profile according to the size of the fair and the types of stands. The stages with the largest amount of temporary structure wastes generated are the assembly and the dismantling of the trade fair.The results indicate that the most common wastes generated are the protective plastic from carpets at the assembly stage and the carpet itself at the dismantling stage. The stand carpet is collected in bulk, while the carpet from the communal spaces is recycled. As the size of the fair increases, and with it the proportion of stands with customised design (or non-reusable stands), the quantity of wood and hazardous waste increases.  相似文献   

15.
Anaerobic co-digestion of coffee waste and sewage sludge   总被引:1,自引:0,他引:1  
The feasibility of the anaerobic co-digestion of coffee solid waste and sewage sludge was assessed. Five different solid wastes with different chemical properties were studied in mesophilic batch assays, providing basic data on the methane production, reduction of total and volatile solids and hydrolysis rate constant. Most of the wastes had a methane yield of 0.24-0.28 m3 CH4(STP)/kg VS(initial) and 76-89% of the theoretical methane yield was achieved. Reduction of 50-73% in total solids and 75-80% in volatile solids were obtained and the hydrolysis rate constants were in the range of 0.035-0.063 d(-1). One of the solid wastes, composed of 100% barley, achieved a methane yield of 0.02 m3 CH4(STP)/kg VS(initial), reductions of 31% in total solids, 40% in volatile solids and achieved only 11% of the theoretical methane yield. However, this waste presented the highest hydrolysis rate constant. Considering all the wastes, an inverse linear correlation was obtained between methane yield and the hydrolysis rate constant, suggesting that hydrolysis was not the limiting factor in the anaerobic biodegradability of this type of waste.  相似文献   

16.
Contact bioassays are important for testing the ecotoxicity of solid materials. However, survival and reproduction tests are often not practical due to their duration which may last for several weeks. Avoidance tests with soil invertebrates may offer an alternative or extension to the classic test batteries due to their short duration (days rather than weeks) and due to a sensitive sub-acute endpoint (behavior). The aims of our study were: (a) to evaluate the effects of three solid industrial wastes (incineration ash, contaminated wood chips and contaminated soil) on three Oligochaeta species (enchytraeids Enchytraeus albidus, Enchytraeus crypticus and earthworm Eisenia fetida) in avoidance tests; (b) to compare the sensitivity among the species and to compare results of avoidance test to reproduction tests; (c) to elucidate if measuring the weight in the earthworm avoidance test could be reasonable additional endpoint. Avoidance mostly increased with the increasing percent of waste in the mixture showing a dose–response curve. E. fetida was the most sensitive species and E. crypticus the least one. An additional endpoint, (changes in weight after two-day exposure) was not found to be more sensitive than avoidance reaction, but it confirmed that earthworms staying in the highest concentrations of the waste mixture were affected showing apparent weight reduction. Our results indicate that avoidance tests with earthworms and enchytraeids are feasible for waste testing.  相似文献   

17.
In recent years thermal utilization of mixed wastes and solid recovered fuels has become of increasing importance in European waste management. Since wastes or solid recovered fuels are generally composed of fossil and biogenic materials, only part of the CO2 emissions is accounted for in greenhouse gas inventories or emission trading schemes. A promising approach for determining this fraction is the so-called radiocarbon method. It is based on different ratios of the carbon isotopes 14C and 12C in fossil and biogenic fuels. Fossil fuels have zero radiocarbon, whereas biogenic materials are enriched in 14C and reflect the 14CO2 abundance of the ambient atmosphere. Due to nuclear weapons tests in the past century, the radiocarbon content in the atmosphere has not been constant, which has resulted in a varying 14C content of biogenic matter, depending on the period of growth. In the present paper 14C contents of different biogenic waste fractions (e.g., kitchen waste, paper, wood), as well as mixtures of different wastes (household, bulky waste, and commercial waste), and solid recovered fuels are determined. The calculated 14C content of the materials investigated ranges between 98 and 135 pMC.  相似文献   

18.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

19.
The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production.Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes.Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m3 of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.  相似文献   

20.
Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected “raw” and primarily “engineered” (“composite”) wood wastes.The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in “engineered” wood wastes as compared with “raw” wood wastes; and relatively high energy content values of “engineered” wood wastes (ranging on the whole from 3675 to 5105 kcal kg−1 for HHV, and from 3304 to 4634 kcal kg−1 for LHV).The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in “engineered” wood burning tests of pyrroles and amines, as well as the additional presence (as compared with “raw” wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon.Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in “engineered” wood burning tests as compared with “raw” wood burning test; and considerable generation of the respirable PM1 fraction during incomplete industrial wood burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号