首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32° and 27° for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.  相似文献   

2.
Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous ‘wet’ and ‘dry’ digesters at organic loading rate (OLR) up to 6 kg volatile solids (VS) m?3 day?1. The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the ‘dry’ digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In ‘wet’ digestion a fine particle size led to severe foaming and the process could not be operated above 5 kg VS m?3 day?1. Although the trial was not designed as a direct comparison between ‘wet’ and ‘dry’ digestion, the specific biogas yield of the ‘dry’ digesters was 90% of that produced by ‘wet’ digesters fed on the same waste at the same OLR.  相似文献   

3.
Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l?1 d?1 and 3.84 g COD l?1 d?1, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factors affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t?1 TS d?1 and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t?1 TS d?1 and the inhibition was enhanced with the increase of TON loading.  相似文献   

4.
Large direct shear testing (300 mm × 300 mm box) of municipal solid waste (MSW) collected from a landfill located in the San Francisco Bay area was performed to gain insight on the shear response of MSW. The study investigated the effects of waste composition, confining stress, unit weight, and loading rate on the stress–displacement response and shear strength of MSW. The amount and orientation of the fibrous waste materials in the MSW were found to play a critical role. The fibrous material had little effect on the MSW’s strength when it was oriented parallel to the shear surface, as is typically the case when waste material is compressed vertically and then tested in a direct shear apparatus. Tests in which the fibrous material was oriented perpendicular to the horizontal shear surface produced significantly stronger MSW specimens. The test results indicate that confining stress and loading rate are also important factors. Based on 109 large-scale direct shear tests, the shear strength of MSW at low moisture contents is best characterized by cohesion = 15 kPa, friction angle = 36° at a normal stress of 1 atmosphere, and a decrease in the friction angle of 5° for every log-cycle increase in normal stress.  相似文献   

5.
Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution.  相似文献   

6.
Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998–2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg day?1 (while one more resident generates 1.48 kg day?1). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg day?1. One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas.  相似文献   

7.
Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t?1 rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2-eq t?1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t?1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.  相似文献   

8.
In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO4), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO4 can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.  相似文献   

9.
Cylindrical cyclone media separators using a suspended calcite separation media simulating industrial scale operations are demonstrated to effectively separate a wide variety of forms and a greater range of particle sizes of plastics by density than presently recycled. Purities of plastic products and recoveries obtained from mixed plastic wastes are comparable to those reported for established separations. Products of ≈100% purity with recoveries of >99% were obtained for high density fractions and >98% purities and recoveries for the low density fractions. Cyclonic centrifugal forces and/or the fine particle size of the separation media appear to minimize hydroscopic and particle shape effects.A mathematical model is proposed for defining plastic waste feed rates and treatable particle size ranges for the LARCODEMS media separator.Waste plastic separations yielded Ecart probable (Ep) values ?0.024 for a water only separation media. The Ep for 1.1 g cm?3 separation medias was <0.032 with minimal to no variation in values for 1–8 mm particle sizes. Variation in the quality of separations is shown to be minimal with <72 μm, <45 μm and <2 μm media particle sizes. Media density offset created varied according to particle size.  相似文献   

10.
The wide range of optimal values reported for the physical parameters of compost mixtures suggest that their interactive relationships should be investigated. The objective of this study was to examine the microbial O2 uptake rate (OUR) in 16 sludge waste recipes, offering a range of moisture content (MC), waste/bulking agent (W/BA) ratio and BA particle size levels determined using a central composite experimental design. The 3 kg samples were maintained at a constant temperature and aeration rate for 28 days, during which a respirometer recorded O2 uptake to provide a measure of microbial activity and biodegradability. The cumulative O2 consumption after 14 and 28 days was found to be significantly influenced by MC, W/BA ratio, BA particle size and the interaction between MC and W/BA ratio (p < 0.05). Using multivariate regression analysis, the experimental data was used to generate a model with good predictive ability for cumulative O2 consumption after 28 days as a function of the significant physical variables (R2 = 0.84). The prediction of O2 uptake by the model depended highly on the interaction between MC and W/BA ratio. A MC outside of the traditional 50–60% (wet basis) range still resulted in a high level of microbial O2 uptake as long as the W/BA ratio was adjusted to maintain a suitable O2 exchange in the sample. The evolution of OUR in the samples was also investigated, uncovering strong associations between short and long-term respirometric indices, such as peak OUR and cumulative O2 consumption (p < 0.005). Combining peak OUR data with cumulative O2 consumption after 14 days allowed for accurate predictions of cumulative O2 after 28 days of aeration (R2 = 0.96), implying that future studies need only run trials up to 14 days to evaluate the overall O2 consumption or biodegradability of similar sludge mixtures.  相似文献   

11.
An intermittent aerated semi-aerobic bioreactor landfill has the advantages such as accelerating stabilization of municipal solid waste (MSW), reducing methane, and in situ nitrogen removal. However, the introduction of air into a nutrient rich environment induces nitrification and denitrification processes, as well as the potential to generate N species at intermediate oxidation states, including nitrous oxide (N2O). In this study, a simulated intermittent aerated semi-aerobic bioreactor landfill was designed and operated for 262 d in order to establish the production characteristics of N2O. The N2O concentration changed significantly with the degree of MSW stabilization, a low concentration level ranged from undetectable to 100 ppm in the initial stabilization period, then one or two orders of magnitude higher in the later stabilization period compared with the initial period. It is clear that N2O production is relevant to the biodegradable organics in leachate and refuse. Once the biodegradable carbon sources were insufficient, which limited the activity of denitrifying organisms, higher N2O production began.  相似文献   

12.
In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are essential for the improvement of resource recovery in the Thermo-Re® process.  相似文献   

13.
Municipal Solid Wastes (MSWs) in Greece consist mainly of fermentable organic material such as food scraps (~50%) and paper residuals (~20%). The aim of this work was to study the thermo-chemical pretreatment of the kitchen waste (KW) fraction of MSW focusing on biotechnological exploitation of pretreated wastes for biofuel production. A representative sample of municipal food residues was derived by combining weighted amounts of each individual type of residue recognized in daily samples obtained from the University of Patras’ students restaurant located at the Students Residence Hall (Greece). Chemical pretreatment experiments of the representative KW sample were performed using several types of chemical solutions (i.e. H2SO4, HCl, NaOH, H2SO3) of different solute concentration (0.7%, 1.5%, 3%) at three temperatures (50, 75, 120 °C) and a range of residence times (30–120 min). Optimized results proved that chemical pretreatment of KW, using either 1.12% HCl for 94 min or 1.17% HCl for 86 min (at 100 °C), increased soluble sugars concentration by 120% compared to untreated KW. The increase of soluble sugars was mainly attributed to the mono-sugars glucose and fructose.  相似文献   

14.
There are numerous non-biodegradable organic materials in the mature landfill leachate. To meet the new discharge standard of China, additional advanced treatment is needed for the effluent from the biological treatment processes of leachate. In this study, a combined process including two stages of “Fenton-biological anaerobic filter (BANF)–biological aerated filter (BAF)” was evaluated to address the advanced treatment need. The Fenton oxidation was applied to reduce chemical oxygen demand (COD) and enhance biodegradability of refractory organics, and the BANF–BAF process was then applied to remove the total nitrogen (TN). The treatment achieved effluent concentrations of COD < 70 mg/L, TN < 40 mg/L and NH3–N < 10 mg/L. The removal efficiency of COD and TN were 96.1% and 95.9%, respectively. The effluent quality met the new discharge standard for Pollution Control on the Landfill Site of Municipal Solid of PR China (GB16889-2008). The operation cost of these processes was about 36.1 CHY/t (5.70 USD/t).  相似文献   

15.
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism.MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion.Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated.The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.  相似文献   

16.
Pyrolysis of large printed circuit board (PCB) waste particle was conducted on a specially designed laboratory-scale thermobalance (Macro-TG) with sample loading of 30 g under dynamic nitrogen atmosphere. The effects of heating rate (10, 15, 20 and 25 °C min?1) and particle size (1 mm × 1 mm, 5 mm × 5 mm, 10 mm × 10 mm and 10 mm × 20 mm) were examined. To compare the different decomposition behavior of fine and large one, the thermal decomposition of PCB waste powder (approximately 5 mg) was also performed on a thermogravimetric analyzer (common TG) under various heating rates (10, 15, 20 and 40 °C min?1) and particle size ranges (0.198–0.165 mm, 0.165–0.074 mm, 0.074–0.055 mm and 0.055–0.047 mm). Experimental results show that large particle has a pyrolysis reaction retardancy compared to fine one. The distributed activation energy model was used to study the pyrolysis kinetics. It was found that during pyrolysis process, values of frequency factor (k0) changed with different activation energy (E) values. On common TG, the E values range from 156.95 to 319.37 kJ mol?1 and k0 values range from 2.67 × 1013 to 2.24 × 1027 s?1. While, on Macro-TG, the range of E was 31.48–41.26 kJ mol?1 and of the frequency factor was 19.80–202.67 s?1.  相似文献   

17.
Kolkata is one of four metropolitan cities in India. With an area of 187.33 sq km and a population of about 8 million, it generates around 3,000 t d?1 of municipal solid waste (MSW) at a rate of 450–500 g per capita per day. With rapid urbanization as a result of planned and unplanned growth and industrialization, the problems associated with handling MSW have increased at an alarming rate over the past few years. No source segregation arrangement exists; there is only limited (60%) house-to-house collection; and 50–55% open vats are used in the present collection system. The operational efficiency of the Kolkata Municipal Corporation (KMC) transport system is about 50%, with a fleet composed of about 30–35% old vehicles. The majority (80%) of these, particularly the hired vehicles, are more than 20 years old. The newly added areas covered by KMC have even lower collection efficiencies, and only an informal recycling system exists. The waste collected has a low energy value (3,350–4,200 kJ kg?1) with high moisture and inert content. A 700 t d?1 compost plant set up in 2000 has not been functioning effectively since 2003. Open dumping (without liners and without a leachate management facility) and the threat of groundwater pollution, as well as saturation of an existing landfill site (Dhapa) are the most pressing problems for the city today. KMC spends 70–75% of its total expenditures on collection of solid waste, 25–30% on transportation, and less than 5% on final disposal arrangements. The Kolkata Environmental Improvement Project, funded by the Asian Development Bank, is seen as only a partial solution to the problem. A detailed plan should emphasize segregation at the source, investment in disposal arrangements (including the use of liners and leachate collection), and an optimized transport arrangement, among improvements.  相似文献   

18.
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100–350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states.  相似文献   

19.
The Waste Framework Directive (WFD; 2008/98/EC) states that classification of hazardous ecotoxicological properties of wastes (i.e. criteria H-14), should be based on the Community legislation on chemicals (i.e. CLP Regulation 1272/2008). However, harmonizing the waste and chemical classification may involve drastic changes related to choice of leaching tests as compared to e.g. the current European standard for ecotoxic characterization of waste (CEN 14735). The primary aim of the present study was therefore to evaluate the influence of leaching conditions, i.e. pH (inherent pH (~10), and 7), liquid to solid (L/S) ratio (10 and 1000 L/kg) and particle size (<4 mm, <1 mm, and <0.125 mm), for subsequent chemical analysis and ecotoxicity testing in relation to classification of municipal waste incineration bottom ash. The hazard potential, based on either comparisons between element levels in leachate and literature toxicity data or ecotoxicity testing of the leachates, was overall significantly higher at low particle size (<0.125 mm) as compared to particle fractions <1 mm and <4 mm, at pH 10 as compared to pH 7, and at L/S 10 as compared to L/S 1000. These results show that the choice of leaching conditions is crucial for H-14 classification of ash and must be carefully considered in deciding on future guidance procedures in Europe.  相似文献   

20.
The objective of this study was to determine whether the fear of dioxin/furan emissions from waste-to-energy plants was justified by the 2007 status of emissions of French municipal solid waste incinerators (MSWIs). All emissions were examined, plant by plant, but this paper focuses on the incinerator emission that is most frequently mentioned in the French media, toxic dioxins and furans. The study showed that there are 85 large MSWI that generate electricity or heat, i.e., waste-to-energy (WTE) plants, and 39 smaller MSW incinerators. The results showed that all French MSWI are operated well below the EU and French standard of 0.1 ng TEQ Nm?3 (toxic equivalent nanograms per standard cubic meter) and that their total dioxin/furan emissions decreased from 435 g TEQ in 1997 to only 1.2 g in 2008. All other industrial emissions of dioxins have also decreased and the major source is residential combustion of wood (320 g TEQ). It was extremely difficult to obtain MSWI emission data. This unwarranted lack of transparency has resulted in the public perception that MSWI plants are major contributors to dioxin emissions while in fact they have ceased to be so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号