首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

2.
A study of explosions in several elongated cylindrical vessels with length to diameter L/D = 2.4–20.7 and ignition at vessel's bottom is reported. Ethylene–air mixtures with variable concentration between 3.0 and 10.0 vol% and pressures between 0.30 and 1.80 bara were experimentally investigated at ambient initial temperature. For the whole range of ethylene concentration, several characteristic stages of flame propagation were observed. The height and rate of pressure rise in these stages were found to depend on ethylene concentration, on volume and asymmetry ratio L/D of each vessel. High rates of pressure rise were found in the early stage; in later stages lower rates of pressure rise were observed due to the increase of heat losses. The peak explosion pressures and the maximum rates of pressure rise differ strongly from those measured in centrally ignited explosions, in all examined vessels. In elongated vessels, smooth p(t) records have been obtained for the explosions of lean C2H4–air mixtures. In stoichiometric and rich mixtures, pressure oscillations appear even at initial pressures below ambient, resulting in significant overpressures as compared to compact vessels. In the stoichiometric mixture, the frequency of the oscillations was close to the fundamental characteristic frequency of the tube.  相似文献   

3.
The explosion properties of alkane/nitrous oxide mixtures were investigated and were compared with those of the corresponding alkane/oxygen and alkane/air mixtures. The explosion properties were characterized by three parameters: the explosion limit, explosion pressure, and deflagration index. For the same alkane, the order of the lower explosion limits (LELs) of the mixtures was found to be alkane/oxygen  alkane/air > alkane/nitrous oxide. In addition, the mixtures containing nitrous oxide tended to exhibit higher explosion pressures than the corresponding mixtures containing oxygen under fuel-lean conditions. The Burgess–Wheeler law was also observed to hold for the mixtures containing nitrous oxide.  相似文献   

4.
The laminar burning velocity of hydrogen–air mixtures was determined from pressure variations in a windowless explosion vessel. Initially, quiescent hydrogen–air mixtures of an equivalence ratio of 0.5–3.0 were ignited to deflagration in a 169 ml cylindrical vessel at initial conditions of 1 bar and 293 K. The behavior of the pressure was measured as a function of time and this information was subsequently exploited by fitting an integral balance model to it. The resulting laminar burning velocities are seen to fall within the band of experimental data reported by previous researchers and to be close to values computed with a detailed kinetics model. With mixtures of an equivalence ratio larger than 0.75, it was observed that more advanced methods that take flame stretch effects into account have no significant advantage over the methodology followed in the present work. At an equivalence ratio of less than 0.75, the laminar burning velocity obtained by the latter was found to be higher than that produced by the former, but at the same time close enough to the unstretched laminar burning velocity to be considered as an acceptable conservative estimate for purposes related to fire and explosion safety. It was furthermore observed that the experimental pressure–time curves of deflagrating hydrogen–air mixtures contained pressure oscillations of a magnitude in the order of 0.25 bar. This phenomenon is explained by considering the velocity of the burnt mixture induced by the expansion of combusting fluid layers adjacent to the wall.  相似文献   

5.
The experimental results of the measurements of the explosion pressure and rate of explosion pressure rise as a function of molar methane concentration in the mixture with air in the 40 dm3 explosion chamber are presented. The research was aimed at determination of the explosion limits, according to the EU Standard. The influence of initial temperature of the mixture (changing in the range of 293–473 K) on the fundamental explosion parameters was also investigated. The ignition source was an induction electrical spark of the power equal to approximately 10 W. It was stated, that the increase of initial temperature of the methane-air mixture causes a significant increase of the explosion range.  相似文献   

6.
The paper outlines an experimental study on influence of the spark duration and the vessel volume on explosion parameters of premixed methane–air mixtures in the closed explosion vessels. The main findings from these experiments are: For the weaker ignition the spark durations in the range from 6.5 μs to 40.6 μs had little impact on explosion parameters for premixed methane–air mixtures in the 5 L vessel or 20 L vessel; For the same ignitions and volume fractions of methane in air the explosion pressures and the flame temperatures in both vessels of 5 L and 20 L were approximately the same, but the rates of pressure rises in both vessels of 5 L and 20 L were different; The explosion indexes obtained from the measured pressure time histories for both vessels of 5 L and 20 L were approximately equal; For the weaker ignition with the fixed spark duration 45 μs the ignition energies in the range from 54 mJ to 430 mJ had little impact on the explosion parameters; For the same ignition and the volume fractions of methane in air, the vessel volumes had a significant impact on the flame temperatures near the vessel wall; The flame temperatures near the vessel wall decreased as the vessel volumes increased.  相似文献   

7.
Explosibility studies of hybrid methane/air/cork dust mixtures were carried out in a near-spherical 22.7 L explosibility test chamber, using 2500 J pyrotechnic ignitors. The suspension dust burned as methane/air/dust clouds and the uniformity of the cork dust dispersion inside the chamber was evaluated through optical dust probes and during the explosion the pressure and the temperature evolution inside the reactor were measured. Tested dust particles had mass median diameter of 71.3 μm and the covered dust cloud concentration was up to 550 g/m3. Measured explosions parameters included minimum explosion concentration, maximum explosion pressures and maximum rate of pressure rise. The cork dust explosion behavior in hybrid methane/air mixtures was studied for atmospheres with 1.98 and 3.5% (v/v) of methane. The effect of methane content on the explosions characteristic parameters was evaluated. The conclusion is that the risk and explosion danger rises with the increase of methane concentration characterized by the reduction of the minimum dust explosion concentration, as methane content increases in the atmosphere. The maximum explosion pressure is not very much sensitive to the methane content and only for the system with 3.5% (v/v) of methane it was observed an increase of maximum rate of pressure rise, when compared with the value obtained for the air/dust system.  相似文献   

8.
Experiments were performed on the influence of pre-ignition turbulence on the course of vented gas and dust explosions. A vertical cylindrical explosion chamber of approximately 100 l volume and a length-to-diameter ratio (l/d) of 4.7 consisting of a steel bottom segment and three glass sections connected by steel flanges was used to perform the experiments. Sixteen small fans evenly distributed within the chamber produced turbulent fluctuations from 0 to 0.45 m/s. A Laser-Doppler-anemometer (LDA) was used to measure the flow and turbulence fields. During the experiments the pressure and in the case of dust explosions the dust concentration were measured. In addition, the flame propagation was observed by a high-speed video camera. A propane/nitrogen/oxygen mixture was used for the gas explosion experiments, while the dust explosions were produced by a cornstarch/air mixture.It turned out that the reduced explosion pressure increased with increasing turbulence intensity. This effect was most pronounced for small vents with low activation pressures, e.g. for bursting disks made from polyethylene foil. In this case, the overpressure at an initial turbulence of 0.45 m/s was twice that for zero initial turbulence.  相似文献   

9.
A simple method exists to estimate the limiting oxygen concentration (LOC) based upon the lower explosion limit (LEL) by assuming (1) that the LOC lies at the apex of the explosion area, (2) that the LEL is unaffected by nitrogen addition and (3) that the apex of the explosion area lies on the stoichiometric line. This estimation method is assessed for mixtures relevant to the production of 1,2-dichloroethane. To this end, the explosion areas of ethylene/hydrogen/nitrogen/air, ethylene/nitrogen/air and ethylene/1,2-dichloroethane/hydrogen chloride/nitrogen/air mixtures are determined at typical process conditions. The experiments are performed in a closed spherical 8 l vessel. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel. A 5% pressure rise criterion is used to determine the explosion limits. The experimental procedure is based upon EN 14756. It is found that a safe estimate of the LOC of ethylene/hydrogen/nitrogen/air mixtures can be found based upon the LEL of these mixtures.  相似文献   

10.
The explosion and deflagration-to-detonation transition (DDT) in epoxy propane (E.P.) vapor/air mixture clouds under weak ignition conditions has been studied in an experimental tube of diameter 199 mm and length 29.6 m. E.P. vapor clouds were formed by injecting liquid E.P. into the experimental tube and evaporating of the fine E.P. droplets. The dimension and the evaporating process of the E.P. droplet were measured and analyzed. The E.P. vapor/air mixture clouds were ignited by an electric spark with an ignition energy of 40 J. The characteristics and the stages of the DDT process in the E.P. vapor/air mixtures have been studied and analyzed. A self-sustained detonation wave formed, as was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in the E.P. vapor/air mixture. The influence of the E.P. vapor concentration on the DDT process has been studied. The minimum E.P. vapor concentration for the occurrence of the DDT in the E.P. vapor/air mixture has been evaluated and the variation of DDT distance with E.P. vapor concentration has been analyzed.  相似文献   

11.
During the decommissioning of certain legacy nuclear waste storage plants it is possible that significant releases of hydrogen gas could occur. Such an event could result in the formation of a flammable mixture within the silo ullage and, hence, the potential risk of ignition and deflagration occurring, threatening the structural integrity of the silo. Very fine water mist fogs have been suggested as a possible method of mitigating the overpressure rise, should a hydrogen–air deflagration occur. In the work presented here, the FLACS CFD code has been used to predict the potential explosion overpressure reduction that might be achieved using water fog mitigation for a range of scenarios where a hydrogen–air mixture, of a pre-specified concentration (containing 800 L of hydrogen), uniformly fills a volume located in a model silo ullage space, and is ignited giving rise to a vented deflagration. The simulation results suggest that water fog could significantly reduce the peak explosion overpressure, in a silo ullage, for lower concentration hydrogen–air mixtures up to 20%, but would require very high fog densities to be achieved to mitigate 30% hydrogen–air mixtures.  相似文献   

12.
To evaluate the explosion hazard of ITER-relevant dusts, a standard method of 20-l-sphere was used to measure the explosion indices of fine graphite and tungsten dusts and their mixtures. The effect of dust particle size was studied on the maximum overpressures, maximum rates of pressure rise, and lower explosive concentrations of graphite dusts in the range 4 μm to 45 μm. The explosion indices of 1 μm tungsten dust and its mixtures with 4 μm graphite dust were measured. The explosibility of these dusts and mixtures were evaluated. The dusts tested were ranked as St1 class. Dust particle size was shown to be very important for explosion properties. The finest graphite dust appeared to have the lowest minimum explosion concentration and be able to explode with 2 kJ ignition energy.  相似文献   

13.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

14.
Fiber optic systems are being deployed in locations where explosive gas atmospheres are normally present or are present under fault conditions. The National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory (NIOSH, PRL) conducted a study of laser safety in potentially flammable environments. Researchers conducted experiments to estimate the mean and standard deviation of laser powers needed to ignite 6% methane–air atmospheres using single mode optical fiber tips covered by two types of iron oxide (Fe3O4 and (FeMn)2O3) mixed with a ceramic adhesive. The iron oxides, heated by a 1064 nm continuous wave laser, ignited the methane–air mixtures at similar powers. The minimum igniting power and maximum non-igniting power (10 tests) were 407 and 350 mW, respectively, using a 62.5 μm fiber. Laser beams guided by 125 and 80 μm diameter cladding single mode fibers produced similar methane–air igniting powers. Ignition was not observed using coal particles at powers that produced ignition with the iron oxides. Threshold ignition delays using the single mode fiber were approximately proportional to the inverse square of the igniting power. Ignition delays were significantly longer than the reported activation time for a commercial fiber optic power limiter. Comparisons are made with the results of other researchers.  相似文献   

15.
Experiments have been conducted to gain insight into the credibility of sparging aqueous solutions as an electrostatic ignition hazard for sensitive hydrogen/air or fuel/oxygen mixtures (Minimum Ignition Energies of ∼0.017 mJ and ∼0.002 mJ, respectively, compared to ∼0.25 mJ for hydrocarbon/air mixtures). Tests performed in a 0.5 m3 ullage produced electric field strengths between 125 and 560 V m−1 for air flows of 5–60 l min−1, respectively, comprised of 2–4 mm diameter bubbles. Field strength can be related to the space charge and fitting to an exponential accumulation curve enabled the charge generation rate from the air flows to be estimated. This was observed to be directly proportional to the air flow and its magnitude was consistent with literature data for bubble bursts. The charge accumulation observed at laboratory scale would not be a cause for concern. On the basis of a simple model, the charge accumulation in a 27 m3 ullage was predicted for a range of air flows. It is apparent from such calculations that ignition of hydrocarbon/air mixtures would not be expected. However, it would seem possible that field strengths might be sufficient to cause a risk of incendive spark or corona discharges in moderately sized vessels with sensitive flammable mixtures.  相似文献   

16.
A method for the determination of safety properties for micro reactors and micro structured components is presented. Micro structured reactors are not inherently safe but the range of safe operating conditions of micro reactors are extended since the explosion region is reduced. The λ/3 rule was demonstrated to be applicable to micro scale tubes for stoichiometric mixtures of ethane–oxygen and ethane–nitrous oxide. Furthermore first results from an investigation concerning detonation propagation through a micro reactor of non-ideal geometry are shown. Initial pressure investigated is ranging from low pressure up to 100 kPa.  相似文献   

17.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

18.
Experimental investigations were done in the paper for the process of venting explosion in a ϕ200 mm×400 mm cylindrical vessel. Compared with the normal venting process, the phenomenon of external explosion was observed and discussed first. Moreover, when CH4–air mixture gases were used and the vent diameter was 55 mm, three kinds of condition were selected: ϕ=0.8, ϕ=1.0 and ϕ=1.3. And two ignition positions were selected: at the vessel center and at the bottom. Then the venting processes influenced by these factors were experimented and discussed, too.  相似文献   

19.
Explosion characteristics of five alcohol–air (ethanol, 1-butanol, 1-pentanol, 2-pentanol and 3-pentanol) mixtures were experimentally conducted in an isochoric chamber over wide ranges of initial temperature and pressure. The effect of temperature and pressure on the different explosion behaviors among these alcohols with various structures were investigated. Results show that the peak explosion pressure is increased with the decrease of temperature and increase of pressure. Maximum rate of pressure rise is insensitive to the temperature variation while it significantly increases with the increase of initial pressure. Among the 1-, 2-, and 3-pentanol–air mixtures, 1-pentanol has the highest values in peak explosion pressure and maximum rate of pressure rise and 2-pentanol gives the lowest values at the initial pressure of 0.1 MPa. These differences tend to be decreased with the increase of initial pressure. Among the three primary alcohol–air (ethanol, 1-butanol and 1-pentanol) mixtures, a similar explosion behavior is presented at the lean mixture side because of the combined effect of adiabtic temperature and flame propagation speed. At the rich mixture side, 1-pentanol gives the highest values in peak explosion pressure and maximum rate of pressure rise and ethanol gives the lowest values. This phenomenon can be interpretated from the combining influence of heat release and heat loss, since the flame speeds of ethanol-, 1-butanol-, 1-pentanolair mixtures are close at rich mixture side.  相似文献   

20.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号