首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production.  相似文献   

2.
Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20 mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink–float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC–ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC–ABS and PS are close to 100%. Sink–float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global separation flow sheet is proposed to improve the plastic separation of WEEE.  相似文献   

3.
The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development.  相似文献   

4.
Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be ‘dehalogenating prior to pyrolysing plastics’, ‘performing dehalogenation and pyrolysis at the same time’ or ‘pyrolysing plastics first then upgrading pyrolysis oils’. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of whole recycling process.  相似文献   

5.
Recycling of WEEE plastics: a review   总被引:1,自引:0,他引:1  
Electric and electronic equipment (EEE) is swiftly growing in volume, level of sophistication, and diversity. Also, it evolves briskly, moved by innovation and technical change, and draws on numerous and at times rare resources. Waste EEE (WEEE) has evolved into an important societal problem. Recycling and treating WEEE implies occupational as well as environmental hazards that are still incompletely documented. Still, second hand EEE has been exported and treated in Africa, China, and India in a precarious informal context. In developed countries, EEE recycling has been sustained by a wide range of initiatives and motives, such as sustainability, creating jobs, and the value of precious or rare metals. Current EU Directives require a steep reduction of WEEE plastics (WEEP) going to landfill. Mechanical, thermal, and feedstock recycling of WEEP are analysed and some options confronted. Plastics recycling should be weighed against the eventual risks related to their hazardous ingredients, mainly legacy brominated fire retardants and heavy metals. Another paper is related to a somewhat similar problem, yet involving a different mix of plastics: recycling plastics from automotive shredder residue.  相似文献   

6.
The growing consumption of electric and electronic equipment results in creating an increasing amount of electronic waste. The most economically and environmentally advantageous methods for the treatment and recycling of waste electric and electronic equipment (WEEE) are the thermal techniques such as direct combustion, co-combustion with plastic wastes, pyrolysis and gasification. Nowadays, this kind of waste is mainly thermally treated in incinerators (e.g. rotary kilns) to decompose the plastics present, and to concentrate metals in bottom ash. The concentrated metals (e.g. copper, precious metals) can be supplied as a secondary raw material to metal smelters, while the pyrolysis of plastics allows the recovery of fuel gases, volatilising agents and, eventually, energy. Indeed, WEEE, such as a printed circuit boards (PCBs) usually contains brominated flame retardants (BFRs). From these materials, hydrobromic acid (HBr) is formed as a product of their thermal decomposition.In the present work, the bromination was studied of copper, silver and gold by HBr, originating from BFRs, such as Tetrabromobisphenol A (TBBPA) and Tetrabromobisphenol A-Tetrabromobisophenol A diglycidyl ether (TTDE) polymer; possible volatilization of the bromides formed was monitored using a thermo-gravimetric analyzer (TGA) and a laboratory-scale furnace for treating samples of metals and BFRs under an inert atmosphere and at a wide range of temperatures. The results obtained indicate that up to about 50% of copper and silver can evolve from sample residues in the form of volatile CuBr and AgBr above 600 and 1000 °C, respectively. The reactions occur in the molten resin phase simultaneously with the decomposition of the brominated resin. Gold is resistant to HBr and remains unchanged in the residue.  相似文献   

7.
WEEE flow and mitigating measures in China   总被引:4,自引:0,他引:4  
The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.  相似文献   

8.
In this paper new analytical inspection strategies, based on hyperspectral imaging (HSI) in the VIS–NIR and NIR wavelength ranges (400–1000 and 1000–1700 nm, respectively), have been investigated and set up in order to define quality control logics that could be applied at industrial plant level for polyolefins recycling. The research was developed inside the European FP7 Project W2Plastics “Magnetic Sorting and Ultrasound Sensor Technologies for Production of High Purity Secondary Polyolefins from Waste”. The main aim of the project is the separation of pure polyethylene and polypropylene adopting an innovative process, the magnetic density separation (MDS). Spectra of plastic particles and contaminants resulting from post-consumer complex wastes and of virgin polyolefins have been acquired by HSI and by Raman spectroscopy. The classification results obtained applying principal component analysis (PCA) on HSI data have been compared with those obtained by Raman spectroscopy, in order to validate the proposed innovative methodology. Results showed that HSI sensing techniques allow to identify both polyolefins and contaminants. Results also demonstrated that HSI has a great potentiality as a tool for quality control of feed (identification of contaminants in the plastic waste) and of the two different pure polypropylene and polyethylene flow streams resulting from the MDS-based recycling process.  相似文献   

9.
The recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this paper, recycling techniques of carbon fiber-reinforced plastic (CFRP) using supercritical and subcritical fluids were reviewed. The matrix resin of CFRP such as epoxy resin or resol resin was decomposed by supercritical and subcritical fluids, and the carbon fiber without thermal damage was recovered from CFRP. Mainly, water or alcohol was used as decomposition medium.  相似文献   

10.
Plastic recycling has been the key issue for reducing environmental problems and resolving resource depletion. To improve the recovery rate of plastics, the plastic wastes are correctly identified according to their resin type. However, the identification system, which is able to identify black plastics according to not only the type of black plastics but also the grade of resins correctly, has not been introduced. In this paper, laser-induced breakdown spectroscopy, intelligent algorithms and preprocessing algorithms are used to improve the identification of black plastics such as polypropylene, polystyrene (PS), and acrylonitrile butadiene styrene (ABS). The laser-induced breakdown spectroscopy is capable of obtaining the characteristic spectrum regardless of material’s physical state. To extract the new features which are very valuable to improving learning performance, increasing computational efficiency, and building better generalization models from the obtained spectra through laser-induced breakdown spectroscopy, the hybrid preprocessing algorithm, composed of principal component analysis and independent component analysis, is used. In addition, the intelligent algorithm named the extended radial basis function neural networks inheriting the advantages of fuzzy theory and neural networks is used to identify black plastic samples into several categories with respect to their resins. The proposed identification system, composed of three parts such as laser induced breakdown spectroscopy, hybrid preprocessing algorithms, and an efficient intelligent classification algorithm, is able to show the synergy effect on the black plastic identification problem. From several experimental results, it can be seen that the identification system based on laser-induced breakdown spectroscopy and the intelligent algorithm is used for identification of black plastics by resin type.  相似文献   

11.
If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management.Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector.  相似文献   

12.
In Korea, generation of waste electrical and electronic equipment (WEEE), or electronic waste (e-waste), has rapidly increased in recent years. The management of WEEE has become a major issue of concern for solid waste communities due to the volumes of waste being generated and the potential environmental impacts associated with the toxic chemicals found in most electronic devices. Special attention must be paid when dealing with WEEE because of toxic materials that it contains (e.g., heavy metals, polybrominated diphenyl ethers, phthalates, and polyvinyl chloride). If managed improperly, the disposal of WEEE can adversely affect the environment and human health. Environmental regulatory agencies; electronic equipment manufacturers, retailers, and recyclers; environmental nongovernmental organizations; and many others are much interested in updated statistics with regard to how much WEEE is generated, stored, recycled, and disposed of. In Korea, an extended producer responsibility policy was introduced in 2003 not only to reduce the amount of electronic products requiring disposal, but also to promote resource recovery from WEEE; the policy currently applies to a total of ten electrical and electronic product categories. This article presents an overview of the current recycling practices and management of electrical and electronic waste in Korea. Specifically, the generation rates, recycling systems and processes, and recent regulations of WEEE are discussed. We estimated that 1 263 000 refrigerators, 701 000 washing machines, 1 181 000 televisions, and 109 000 airconditioning units were retired and handled by the WEEE management system in 2006. More than 40% of the products were collected and recycled by producers. Four major producers’ recycling centers and other WEEE recycling facilities are currently in operation, and these process a large faction of WEEE for the recovery of valuable materials. Much attention should still be paid to pollution prevention and resource conservation with respect to WEEE. Several suggestions are made in order to deal with electronic waste management problems effectively and to prevent potential impacts.  相似文献   

13.
Journal of Polymers and the Environment - The separation of an individual plastic from a plastics mix is crucial in plastic recycling management. The selected plastics available in municipal and...  相似文献   

14.
15.
The consumption of electrical and electronic equipment is surging, so is the generation of waste electrical and electronic equipment (WEEE). Due to the large quantity, high potential risk and valuable capacity of WEEE, many countries are taking measures to regulate the management of WEEE. The environmental pollution and human health-harming problems caused by irregular treatment of WEEE in China make the government pay more and more attention to its management. This paper reviews the development of WEEE management in China, introduces the new policy which is established for WEEE recycling and especially analyzes the effectiveness of the policy, including huge recovery, formation of new recycling system, strict supervision to related enterprises, and the stimulation to public awareness. Based on the current achievement, some recommendations are given to optimize the WEEE management in China.  相似文献   

16.
Waste plastics recycling process using coke ovens   总被引:3,自引:0,他引:3  
The Japan Iron and Steel Federation (JISF), as its voluntary energy-saving action plan, proposed a 10% energy reduction by 2010 with 1990 as the basis. Further, it has suggested an additional 1.5% energy saving by the use of waste plastics as a metallurgical raw material. The amount of processing of waste plastics which corresponds to this amount of energy conversion is about 1 million t scale during 1 year. Conventional known methods for recycle-processing of waste plastics include, for example, the method of injection into a blast furnace to use waste plastics as an iron-ore reducing agent instead of coal. On the other hand, the coking process is considered to be suitable as a waste plastic recycling facility because the process involves coal carbonization in a high-temperature and reducing atmosphere. Carbonization tests with mixed waste plastics were conducted with laboratory equipment and in actual coke ovens. As a result, it was confirmed that the waste plastics recycling process using coke ovens is feasible. Therefore, a waste plastics recycling process using coke ovens was started as a chemical recycling technology at Nippon Steel.  相似文献   

17.
This study focused on waste plastic, especially the polyethylene telephthalate (PET) bottle as representative waste, which has been assigned as goods to be recycled by the Packaging Waste Recycling Law in Japan. We developed a plastic transport model which explained the entire flow of plastic from the production stage to the disposal stage within an the evaluation model of plastic recycle policy based on multiattribute utility theory. This model is designed to be used by local municipal governments in supporting the evaluation of the PET bottle recycling policy. In evaluating the plastics recycling policy, we selected indices relating to economy, ecology, and rate of resource recycling. The results indicate that when the evaluation of the material recycling policy and thermal recycling policy in the model city were characterized in terms of their economic and environmental aspects the thermal recycling policy had the highest utility within our scenario. Received: July 31, 1998 / Accepted: January 26, 1999  相似文献   

18.
蔡凯武  刘春 《化工环保》2021,40(6):567-572
本文在持续跟踪环保型塑料产业动态的基础上,从原料开发、产品设计、废弃物回收利用等方面,综述了生物基和石油基环保型塑料产业的最新进展,旨在为塑料研发人员和相关产业工作者开拓思路。指出:环保型塑料是未来塑料产业发展的重要方向,非环保型塑料的市场份额将逐步被环保型塑料占据,最后稳定在较低的水平上。  相似文献   

19.
With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO2e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.  相似文献   

20.
This paper presents and critically analyses the current waste electrical and electronic equipment (WEEE) management practices in various countries and regions. Global trends in (i) the quantities and composition of WEEE; and (ii) the various strategies and practices adopted by selected countries to handle, regulate and prevent WEEE are comprehensively examined. The findings indicate that for (i), the quantities of WEEE generated are high and/or on the increase. IT and telecommunications equipment seem to be the dominant WEEE being generated, at least in terms of numbers, in Africa, in the poorer regions of Asia and in Latin/South America. However, the paper contends that the reported figures on quantities of WEEE generated may be grossly underestimated. For (ii), with the notable exception of Europe, many countries seem to be lacking or are slow in initiating, drafting and adopting WEEE regulations. Handling of WEEE in developing countries is typified by high rate of repair and reuse within a largely informal recycling sector. In both developed and developing nations, the landfilling of WEEE is still a concern. It has been established that stockpiling of unwanted electrical and electronic products is common in both the USA and less developed economies. The paper also identifies and discusses four common priority areas for WEEE across the globe, namely: (i) resource depletion; (ii) ethical concerns; (iii) health and environmental issues; and (iv) WEEE takeback strategies. Further, the paper discusses the future perspectives on WEEE generation, treatment, prevention and regulation. Four key conclusions are drawn from this review: global amounts of WEEE will continue unabated for some time due to emergence of new technologies and affordable electronics; informal recycling in developing nations has the potential of making a valuable contribution if their operations can be changed with strict safety standards as a priority; the pace of initiating and enacting WEEE specific legislation is very slow across the globe and in some cases non-existent; and globally, there is need for more accurate and current data on amounts and types of WEEE generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号