首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research shows that livestock account for a significant proportion of greenhouse gas (GHG) emissions and global consumption of livestock products is growing rapidly. This paper reviews the life cycle analysis (LCA) approach to quantifying these emissions and argues that, given the dynamic complexity of our food system, it offers a limited understanding of livestock's GHG impacts. It is argued that LCA's conclusions need rather to be considered within a broader conceptual framework that incorporates three key additional perspectives. The first is an understanding of the indirect second order effects of livestock production on land use change and associated CO2 emissions. The second compares the opportunity cost of using land and resources to rear animals with their use for other food or non-food purposes. The third perspective is need—the paper considers how far people need livestock products at all. These perspectives are used as lenses through which to explore both the impacts of livestock production and the mitigation approaches that are being proposed. The discussion is then broadened to consider whether it is possible to substantially reduce livestock emissions through technological measures alone, or whether reductions in livestock consumption will additionally be required. The paper argues for policy strategies that explicitly combine GHG mitigation with measures to improve food security and concludes with suggestions for further research.  相似文献   

2.
Climate change objectives of mitigation and adaptation are being mainstreamed into many policies and strategies around the world. In Europe, this has included the Rural Development Programme, which aims to tackle multiple social, economic and environmental objectives in rural areas, and the integration of climate change objectives adds another strand of complexity to the decision making process. When formulating policies determining the likely effectiveness of any particular measure can be challenging, especially with respect to the spatial and temporal variability of greenhouse gas emissions. This is a challenge faced by all countries and regions around the world. This study uses Europe as an example to explore this issue. It highlights the variability in emissions from land use operations that may be encountered under different conditions and time horizons and considers this in the context of policy formulation. The Optimal Strategies for Climate change Action in Rural Areas software has been adapted to derive net greenhouse gas emissions for rural development operations for all regions in Europe. Operations have been classified into five categories based on their benefit/burden over different time horizons. The analysis shows that it is important to understand the time period over which benefits or burdens are realised and determine how this fits with policy instruments, such as land management agreements and the permanency of actions. It also shows that in some regions an operation can have benefits, but in other regions it has burdens; thus, location can be critical. Finally, in the context of developing operations to meet multiple social, economic and environmental objectives, it is important to acknowledge that seeking options that only reduce emissions may not always be practical or possible. In some instances, we may have to accept an increase in emissions in order to meet other objectives. It is important that we evaluate the net greenhouse gas emissions of all operations, not just those aimed at climate change mitigation. We can then select those with the least burden in the process of developing optimal solutions to meet multiple objectives.  相似文献   

3.
4.
This paper summarises the findings of an Intergovernmental Panel on Climate Change (IPCC) Expert Meeting on Methods for the Assessment of Inventory Data Quality held in Bilthoven, The Netherlands, 5–7 November 1997. Under the Kyoto Protocol of the Climate Convention, reliable inventories of national greenhouse gases (GHG) are needed for verifying compliance. Four approaches are suggested for assessing and improving the quality of greenhouse gas inventories: inventory quality assurance; inventory comparisons; model comparisons; and direct emission measurements. The paper presents recommendations for improving the quality of emission estimates of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).  相似文献   

5.
Mitigation and Adaptation Strategies for Global Change - The reduction of urban heat island (UHI) and carbon emission is of great importance for thermal environment of urban residential areas. This...  相似文献   

6.
7.
8.
Preventing dangerous climate change requires actions on several sectors. Mitigation strategies have focused primarily on energy, because fossil fuels are the main source of global anthropogenic greenhouse gas emissions. Another important sector recently gaining more attention is the forest sector. Deforestation is responsible for approximately one fifth of the global emissions, while growing forests sequester and store significant amounts of carbon. Because energy and forest sectors and climate change are highly interlinked, their interactions need to be analysed in an integrated framework in order to better understand the consequences of different actions and policies, and find the most effective means to reduce emissions. This paper presents a model, which integrates energy use, forests and greenhouse gas emissions and describes the most important linkages between them. The model is applied for the case of Finland, where integrated analyses are of particular importance due to the abundant forest resources, major forest carbon sink and strong linkage with the energy sector. However, the results and their implications are discussed in a broader perspective. The results demonstrate how full integration of all net emissions into climate policy could increase the economic efficiency of climate change mitigation. Our numerical scenarios showed that enhancing forest carbon sinks would be a more cost-efficient mitigation strategy than using forests for bioenergy production, which would imply a lower sink. However, as forest carbon stock projections involve large uncertainties, their full integration to emission targets can introduce new and notable risks for mitigation strategies.  相似文献   

9.
Nowadays, it is widely acknowledged that climate change will affect mining industry and may pose significant risks to the economic viability of mining enterprises. So far, the vast majority of recent research efforts on this subject have focused, not surprisingly, on mining activities operating in northern areas. Nevertheless, climate change is an issue that should be of concern for all mining industry, worldwide. For this reason, this paper addresses the impacts of climate change on mining industry in the Mediterranean Region, and specifically Greece, and attempts, for the first time, to estimate the cost of climate change-related risks to the sector by means of a ??top-down?? approach. Towards this direction, climate projections based on the United Nations International Panel on Climate Change (IPCC) A1B emission scenario (which refers to a fast global economic growth, global population that peaks mid-century and then decreases, and a rapid introduction of new and more efficient technologies and a balanced energy source mix) for the time period 2021?C2050 are compared to climate data for the time period 1991?C2000, in order to quantify the impacts in physical terms. Then, both secondary and primary data sources are used to monetize the cost of climate change impacts to mining enterprises. Although there exist certain limitations in the research due to data unavailability, the study reveals the importance of the problem and provides useful findings. More specifically, the estimates indicate that Greece??s mining industry could face economic losses from climate change as high as US$0.8 billion. The cost of adaptation measures is about US$312 million, while that of mitigation measures that will burden the sector through the increased electricity prices is about US$478 million.  相似文献   

10.
A displacement factor can express the efficiency of using biomass to reduce net greenhouse gas (GHG) emission, by quantifying the amount of emission reduction achieved per unit of wood use. Here we integrate data from 21 different international studies in a meta-analysis of the displacement factors of wood products substituted in place of non-wood materials. We calculate the displacement factors in consistent units of tons of carbon (tC) of emission reduction per tC in wood product. The displacement factors range from a low of ?2.3 to a high of 15, with most lying in the range of 1.0 to 3.0. The average displacement factor value is 2.1, meaning that for each tC in wood products substituted in place of non-wood products, there occurs an average GHG emission reduction of approximately 2.1 tC. Expressed in other units, this value corresponds to roughly 3.9 t CO2 eq emission reduction per ton of dry wood used. The few cases of negative displacement factors are the result of worst-case scenarios that are unrealistic in current practice. This meta-analysis quantifies the range of GHG benefits of wood substitution, and provides a clear climate rationale for increasing wood substitution in place of other products, provided that forests are sustainably managed and that wood residues are used responsibly.  相似文献   

11.
Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms.  相似文献   

12.
This study explored the feasibility of using residual biomass to both mitigate greenhouse gas (GHG) emissions and remediate water contaminated by hydrocarbons. Using produced (process-affected) water from Canada’s oil sands operations as a case study, activated biochar (ACB) was found to have a higher affinity to organics than activated coal and removed 75 % of total organic carbon (TOC) from produced water in steam-assisted gravity drainage (SAGD) operations or 90 % of the TOC from synthetic tailings (ST) water sample. Up to 6 Tg dry biomass year?1 would be required to treat the waters associated with the 93?×?106-m3 of bitumen recovered per year. Landfilling the spent ACB and flaring any biogas produced were estimated to provide a greater GHG benefit than the combustion of the biochar + organics for heat to offset natural gas demand. Net costs for the ACB were about 13.84?$?m?3 bitumen for SAGD operations and 1.76?$?m?3 bitumen for mining operations. The values for mining operations justify further work to create a value chain that will integrate bioprocesses into the fossil fuel industry.  相似文献   

13.
Emissions trading is anattractive candidate for implementinggreenhouse gas mitigation, because it canpromote both efficiency and equity. Thispaper analyzes the interregional impacts ofalternative allocations of carbon dioxideemission permits within the U.S. Theanalysis is performed with the aid of anonlinear programming model for ten EPARegions and for six alternative permitdistribution formulas. The reason thatvarious alternatives need to be consideredis that there is no universal consensus onthe best definition of equity. Advanceknowledge of absolute and relative regionaleconomic impacts provides policy-makerswith a stronger basis for making thechoice. The analysis yields several usefulresults. First, the simulations indicatethat no matter how permits are allocated,this policy instrument can substantiallyreduce the cost of GHG mitigation for theU.S. in comparison to a system of fixedquotas for each of its regions. Interestingly, the welfare impacts ofseveral of the allocation formulas differonly slightly despite the large differencesin their philosophical underpinnings. Also, the results for some equity criteriadiffer greatly from their application inthe international domain. For example, theEgalitarian (per capita) criterion resultsin the relatively greatest cost burdenbeing incurred by one of the regions of theU.S. with the lowest per capita income.  相似文献   

14.
15.
本文从原料、生产工艺、处理设备、企业管理等方面论述了烟气黑度超标的相关原因,针对具体情况提出了有针对性的解决方案,改进生产工艺、加强人员管理和设备投入等防治烟气黑度超标现象。  相似文献   

16.
SF5CF3本身不会吸收190nm以上波长的紫外光而发生解离,同时,SF5CF3在大气中非常稳定,和大气中存在量比较丰富的氧化性自由基-- O(1D)、·OH、·NO3不发生反应.初步推断SF5CF3在对流层及平流层中不存在与氧化性自由基反应引起的汇.  相似文献   

17.
Most modelling studies that explore long-term greenhouse gas mitigation scenarios focus on cost-efficient emission pathways towards a certain climate target, like the internationally agreed target to keep global temperature increase below 2 °C compared to pre-industrial levels (the 2 °C climate target). However, different timing of reductions lead to different transient temperature increase over the course of the century and subsequently to differences in the time profiles of not only the mitigation costs but also adaptation costs and residual climate change damage. This study adds to the existing literature by focussing on the implication of these differences for the evaluation of a set of three mitigation scenarios (early action, gradual action and delayed action), all three limiting global temperature increase below 2 °C above pre-industrial levels, using different discount rates. The study shows that the gradual mitigation pathway is, for these discount rates, preferred over early or delayed action in terms of total climate costs and net benefits. The relative costs and benefits of the early or delayed mitigation action scenarios, in contrast, do strongly depend on the discount rate applied. For specific discount rates, these pathways might therefore be preferred for other reasons, such as reducing long-term uncertainty in climate costs by early action.  相似文献   

18.

The development of high-resolution greenhouse gas (GHG) inventories is an important step towards emission reduction in different sectors. However, most of the spatially explicit approaches that have been developed to date produce outputs at a coarse resolution or do not disaggregate the data by sector. In this study, we present a methodology for assessing GHG emissions from the residential sector by settlements at a fine spatial resolution. In many countries, statistical data about fossil fuel consumption is only available at the regional or country levels. For this reason, we assess energy demand for cooking and water and space heating for each settlement, which we use as a proxy to disaggregate regional fossil fuel consumption data. As energy demand for space heating depends heavily on climatic conditions, we use the heating degree day method to account for this phenomenon. We also take the availability of energy sources and differences in consumption patterns between urban and rural areas into account. Based on the disaggregated data, we assess GHG emissions at the settlement level using country and regional specific coefficients for Poland and Ukraine, two neighboring countries with different energy usage patterns. In addition, we estimate uncertainties in the results using a Monte Carlo method, which takes uncertainties in the statistical data, calorific values, and emission factors into account. We use detailed data on natural gas consumption in Poland and biomass consumption for several regions in Ukraine to validate our approach. We also compare our results to data from the EDGAR (Emissions Database for Global Atmospheric Research), which shows high agreement in places but also demonstrates the advantage of a higher resolution GHG inventory. Overall, the results show that the approach developed here is universal and can be applied to other countries using their statistical information.

  相似文献   

19.
A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we explore the constraints and barriers to implementation important for GHG mitigation in agriculture. We also examine how climate and non-climate policy in different regions of the world has affected agricultural GHG emissions in the recent past, and how it may affect emissions and mitigation implementation in the future. We examine the links between mitigation and adaptation and drives for sustainable development and the potential for agricultural GHG mitigation in the future.We describe how some countries have initiated climate and non-climate policies believed to have direct effects or synergistic effects on mitigating GHG emissions from agriculture. Global sharing of innovative technologies for efficient use of land resources and agricultural chemicals, to eliminate poverty and malnutrition, will significantly mitigate GHG emissions from agriculture.Previous studies have shown that as less than 30% of the total biophysical potential for agricultural GHG mitigation might be achieved by 2030, due to price- and non-price-related barriers to implementation. The challenge for successful agricultural GHG mitigation will be to remove these barriers by implementing creative policies. Identifying policies that provide benefits for climate, as well as for aspects of economic, social and environmental sustainability, will be critical for ensuring that effective GHG mitigation options are widely implemented in the future.  相似文献   

20.
Fertilizer nitrogen (N) use is expanding globally to satisfy food, fiber, and fuel demands of a growing world population. Fertilizer consumers are being asked to improve N use efficiency through better management in their fields, to protect water resources and to minimize greenhouse gas (GHG) emissions, while sustaining soil resources and providing a healthy economy. A review of the available science on the effects of N source, rate, timing, and placement, in combination with other cropping and tillage practices, on GHG emissions was conducted. Implementation of intensive crop management practices, using principles of ecological intensification to enhance efficient and effective nutrient uptake while achieving high yields, was identified as a principal way to achieve reductions in GHG emissions while meeting production demands. Many studies identified through the review involved measurements of GHG emissions over several weeks to a few months, which greatly limit the ability to accurately determine system-level management effects on net global warming potential. The current science indicates: (1) appropriate fertilizer N use helps increase biomass production necessary to help restore and maintain soil organic carbon (SOC) levels; (2) best management practices (BMPs) for fertilizer N play a large role in minimizing residual soil nitrate, which helps lower the risk of increased nitrous oxide (N2O) emissions; (3) tillage practices that reduce soil disturbance and maintain crop residue on the soil surface can increase SOC levels, but usually only if crop productivity is maintained or increased; (4) differences among fertilizer N sources in N2O emissions depend on site- and weather-specific conditions; and (5) intensive crop management systems do not necessarily increase GHG emissions per unit of crop or food production; they can help spare natural areas from conversion to cropland and allow conversion of selected lands to forests for GHG mitigation, while supplying the world's need for food, fiber, and biofuel. Transfer of the information to fertilizer dealers, crop advisers, farmers, and agricultural and environmental authorities should lead to increased implementation of fertilizer BMPs, and help to reduce confusion over the role of fertilizer N on cropping system emissions of GHGs. Gaps in scientific understanding were identified and will require the collaborative attention of agronomists, soil scientists, ecologists, and environmental authorities in serving the immediate and long-term interests of the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号