首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment.  相似文献   

2.
Microbial communities in sewage sludge and green waste co-composting were investigated using culture-dependent methods and community level physiological profiles (CLPP) with Biolog Microplate. Different microbial groups characterized each stage of composting. Bacterial densities were high from beginning to end of composting, whereas actinomycete densities increased only after bio-oxidation phase i.e. after 40 days. Fungal populations become particularly high during the last stage of decomposition. Cluster analyses of metabolic profiles revealed a similar separation between two groups of composts at 67 days for bacteria and fungi. Principal component analysis (PCA) applied to bacterial and fungal CLPP data showed a chronological distribution of composts with two phases. The first one (before 67 days), where the composts were characterized by the rapid decomposition of non-humic biodegradable organic matter, was significantly correlated to the decrease of C, C/N, organic matter (OM), fulvic acid (FA), respiration, cellulase, protease, phenoloxidase, alkaline and acid phosphatases activities. The second phase corresponding to the formation of polycondensed humic-like substances was significantly correlated to humic acid (HA) content, pH and HA/FA. The influent substrates selected on both factorial maps showed that microbial communities could adapt their metabolic capacities to the particular environment. The first phase seems to be focused on easily degradable substrate utilization whereas the maturation phase appears as multiple metabolisms, which induce the release of metabolites and their polymerization leading to humification processes.  相似文献   

3.
The effects of adding biosolids to a green waste feedstock (100% green waste, 25% v/v biosolids or 50% biosolids) on the properties of composted products were investigated. Following initial composting, 20% soil or 20% fly ash/river sand mix was added to the composts as would be carried out commercially to produce manufactured soil. Temperatures during composting reached 50 °C, or above, for 23 days when biosolids were included as a composting feedstock but temperatures barely reached 40 °C when green waste alone was composted. Addition of biosolids to the feedstock increased total N, EC, extractable NH4, NO3 and P but lowered pH, macroporosity, water holding capacity, microbial biomass C and basal respiration in composts. Additions of soil or ash/sand to the composts greatly increased the available water holding capacity of the materials. Principal component analysis (PCA) of PCR-DGGE 16S rDNA amplicons separated bacterial communities according to addition of soil to the compost. For fungal ITS-RNA amplicons, PCA separated communities based on the addition of biosolids. Bacterial species richness and Shannon’s diversity index were greatest for composts where soil had been added but for fungal communities these parameters were greatest in the treatments where 50% biosolids had been included. These results were interpreted in relation to soil having an inoculation effect and biosolids having an acidifying effect thereby favouring a fungal community.  相似文献   

4.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

5.
Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min?1. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.  相似文献   

6.
Soil organic matter comprises all dead plant and animal residues, from the most recent inputs to the most intensively humified. We have found that traces of fresh substrates at microg g(-1) soil concentrations (termed 'trigger molecules') activate the biomass to expend more energy than is contained in the original 'trigger molecules'. In contrast, we suggest that the rate limiting step in soil organic matter mineralisation is independent of microbial activity, but is governed by abiological processes (which we term the Regulatory Gate theory). These two findings have important implications for our understanding of carbon mineralisation in soil, a fundamental process in the sequestration of soil organic matter.  相似文献   

7.
This research looked at the need for ligno-cellulolytic inoculants (EM bacteria and Trichoderma sp.) in small to medium scale composting of household wastes. A mixture of household organic waste comprised of kitchen waste, paper, grass clippings and composted material was subjected to various durations of thermo composting followed by vermicomposting with and without microbial inoculants for a total of 28 days. The results revealed that ligno-celluloytic inoculants are not essential to speed up the process of composting for onsite small scale household organic waste treatment as no significant difference was observed between the control and those inoculated with Trichoderma and EM in terms of C:N ratio of the final product. However, it was observed that EM inoculation enhanced reproductive rate of earthworms, and so probably created the best environment for vermicomposting, in all treatment groups.  相似文献   

8.
In this experiment, three microbial strains were inoculated in two different organic wastes to study their effect on the humic acids content, acid phosphatase activity and microbial properties of the final stabilized products. Pyrophosphate extract of vermicomposts were analyzed through polyacrylamide gel electrophoresis to study the nature of a isozymes in different treatments. Results suggested that vermicomposting increased humic acids content and acid phosphatase activity in organic substrates and microbial inoculation further enhanced the rate of humification and enzyme activity. Although humic acids content in different microorganism-inoculated vermicomposts were statistically at par, acid phosphatase activity in these treatments was significantly (P<0.05) different. Results revealed that microbial respiration was increased due to vermicomposting, but a reduction in microbial biomass was recorded after stabilization of organic wastes. Although vermicomposting increased the value of microbial quotient (qCO(2)), microbial inoculation did not show any significant effect on qCO(2). The zymogram revealed that two isozymes of acid phosphatase (group II and group III) were present in all vermicompost samples and higher acid phosphatase activity in fungi-inoculated vermicomposts might be due to the presence of an additional isozyme (group I) of acid phosphatase.  相似文献   

9.
Modelling of organic matter dynamics during the composting process   总被引:1,自引:0,他引:1  
Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO2. Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally.  相似文献   

10.
The fate and effect of the herbicides linuron and metribuzin on the co-composting of sewage sludge and green waste were addressed in this work. The experiments were conducted in metal cubic containers of 1.0 m3 volume simulating a windrow composting system. A mixture of sludge and green waste was prepared at a ratio of 1:5 v/v. The mixture was split in four equal parts and the two herbicides were added, using a pressure sprayer, as sole or mixed pollutant in each of the three mixtures. The forth mixture was composted without any addition of herbicide, to serve as control. Temperature, physicochemical characteristics, herbicide concentration, carbon dioxide emission, methane emission and microbiological parameters were measured either daily or every time the mixtures were turned, for a period of 80 days. Both herbicides’ concentration decreased significantly resulting in removal efficiencies of 99.1–99.7% and 95.8–96.0% for linuron and metribuzin, respectively. Incubation of microbiologically inactive mixtures at a temperature schedule following the spontaneous temperature evolution in the composters resulted in very little (1–11%) decomposition for both herbicides. Comparison of the variation of physicochemical parameters and microbial populations during composting indicated that both herbicides did not affect the composting process.  相似文献   

11.
A microbial fuel cell (MFC) was constructed to investigate the possible generation of electricity using cattle dung as a substrate. After 30 days of operation, stable electricity was generated, and the maximum volumetric power density was 0.220 W/m(3). The total chemical oxygen demand (TCOD) removal and coulombic efficiency (CE) of the MFC reached 73.9±1.8% and 2.79±0.6%, respectively, after 120 days of operation. Acetate was the main metabolite in the anolyte, and other volatile fatty acids (VFAs) (propionate and butyrate) were present in minor amounts. The PCR-DGGE analysis indicated that the following five groups of microbes were present: Proteobacteria, Bacteroides, Chloroflexi, Actinobacteria and Firmicutes. Proteobacteria and Firmicutes were the dominant phyla in the sample; specifically, 36.3% and 24.2% of the sequences obtained were Proteobacteria and Firmicutes, respectively. Clostridium sp., Pseudomonas luteola and Ochrobactrum pseudogrignonense were the most dominant groups during the electricity generation process. The diversity of archaea dramatically decreased after 20 days of operation. The detected archaea were hydrogenotrophic methanogens, and the Methanobacterium genus disappeared during the periods of stable electricity generation via acidogenesis.  相似文献   

12.
Commingled household waste (HW) that had a controlled composition was autoclaved at elevated pressures in the presence of saturated steam for one hour at the nominal temperature levels of 130 °C, 160 °C and 200 °C. The focus of this study was the impact of temperature/pressure on hydrolysis of organic matter during autoclaving and the extent of its hydrolysis. The pH decreased with autoclaving temperature with which it had a linear relationship, and ranged from 7.4 and 6 in floc, and 6.7 and 3.6 in steam condensate. Overall, organic matter solubilisation, as indicated by dissolved organic carbon, biological and chemical oxygen demands, and total dissolved solids, increased with temperature. Lignin did not appear to hydrolyse. Hemicellulose hydrolysed and degraded the most, followed by cellulose. The highest recoveries of hemicellulose and cellulose in solution were achieved at 160 °C, although the latter could be due to experimental error. The largest losses of hemicellulose and cellulose were recorded at 200 °C. The performance of the system in respect to hydrolysis was inferior compared to other hydrothermal systems, particularly those employing wet oxidation.  相似文献   

13.
Bacterial diversity of full scale rotary drum composter from biodegradable organic waste samples were analyzed through two different approaches, i.e., Culture dependent and independent techniques. Culture-dependent enumerations for indigenous population of bacterial isolates mainly total heterotrophic bacteria (Bacillus species, Pseudomonas species and Enterobacter species), Fecal Coliforms, Fecal Streptococci, Escherichia coli, Salmonella species and Shigella species showed reduction during the composting period. On the other hand, Culture-independent method using PCR amplification of specific 16S rRNA sequences identified the presence of Acinetobacter species, Actinobacteria species, Bacillus species, Clostridium species, Hydrogenophaga species, Butyrivibrio species, Pedobacter species, Empedobactor species and Flavobacterium species by sequences clustering in the phylogenetic tree. Furthermore, correlating physico-chemical analysis of samples with bacterial diversity revealed the bacterial communities have undergone changes, possibly linked to the variations in temperature and availability of new metabolic substrates while decomposing organics at different stages of composting.  相似文献   

14.
催化剂作为SCR的核心部件,其中毒与再生受到了广泛的关注。介绍了催化剂的失活原因,包括物理失活及中毒失活,重点阐明其失活机理,针对不同失活原因,综述了现有的催化剂再生技术如水洗再生、热再生、还原再生等,并对催化剂再生的发展前景做出展望。  相似文献   

15.
Compost toilet systems were assessed for their ability to reduce microbial indicators and pathogens. Bacterial pathogens were not detected in any samples indicating a low survival rate in composting feces and/or an initial low occurrence. Indicator bacteria showed large variations with no clear trend of lower bacterial numbers after longer storage. In controlled composting experiments, thermophilic conditions were only reached when amendments were made (grass and a sugar solution). Even then it was impossible to ensure a homogenous temperature in the composting fecal material and therefore difficult to achieve a uniform reduction and killing of indicator organisms. Presumptive thermotolerant coliforms, Salmonella typhimurium Phage 28 B and eggs of Ascaridia galli, proved useful as indicators. However, regrowth was detected for enterococci and total numbers of bacteria grown at 36 degrees C. These indicator parameters may therefore overestimate the level of other (pathogenic) bacteria present in the material and can not be recommended for use as reliable indicator organisms in composting toilet systems. The addition of indicator bacteria to fecal material contained in semi-permeable capsules proved to be a useful technique to ensure that microorganisms were contained in a small test volume.  相似文献   

16.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

17.
In this work, anaerobic digestion of pig slurry and successive composting of the digestate after centrifugation were studied by means of chemical analysis, FTIR and fluorescence spectroscopy as excitation–emission matrix (EEM). Chemical analysis highlighted the organic matter transformation occurring during the processes. A decrease of volatile solids and total organic carbon were observed in the digestate with respect to the fresh pig slurry as a consequence of the consumption of sugars, proteins, amino acids and fatty acids used by microorganisms as a C source. Water Extractable Organic Matter (WEOM) was obtained for all samples and fractionated into a hydrophilic and a hydrophobic fraction. The highest WEOM value was found in the pig slurry indicating a high content of labile organic C. The digestate centrifuged and the digestate composted showed lower hydrophilic and higher hydrophobic contents because of the decrease of labile C. Total phenolic content was lower in the digestate with respect to fresh pig slurry sample (36.7%) as a consequence of phenolic compounds degradation. The strong decrease of total reducing sugars in the digestate (76.6%) as compared to pig slurry confirmed that anaerobic process proceed mainly through consumption of sugars which represent a readily available energy source for microbial activity. FTIR spectra of pig slurry showed bands indicative of proteins and carbohydrates. A drop of aliphatic structures and a decrease of polysaccharides was observed after the anaerobic process along with the increase of the peak in the aromatic region. The composted substrate showed an increase of aromatic and a relative decrease of polysaccharides. EEM spectra provided tryptophan:fulvic-like fluorescence ratios which increased from fresh substrate to digestate because of the OM decompostion. Composted substrate presented the lowest ratio due to the humification process.  相似文献   

18.
Mineralization potentials are often used to classify organic wastes. These methods involve measuring CO2 production during batch experiments, so variations in chemical compounds are not addressed. Moreover, the physicochemical conditions are not monitored during the reactions. The present study was designed to address these deficiencies. Incubations of a mixture of soil and waste (vinasse at 20% dry matter from a fermentation industry) were conducted in aerobic and anaerobic conditions, and liquid samples obtained by centrifugation were collected at 2 h, 1 d and 28 d. Dissolved organic carbon (DOC) patterns highlighted that: there was a “soil effect” which increased organic matter (OM) degradation in all conditions compared to vinasse incubated alone; and OM degradation was faster under aerobic conditions since 500 mg kg?1 of C remained after aerobic incubation, as compared to 4000 mg kg?1 at the end of the anaerobic incubation period. No changes were detected by Fourier transform infrared spectroscopy (FTIR) between 2 h and 1 d incubation. At 28 days incubation, the FTIR signal of the aerobic samples was deeply modified, thus confirming the high OM degradation. Under anaerobic conditions, the main polysaccharide contributions (ν(C–O)) disappeared at 1000 and 1200 cm?1, as also confirmed by the 13C NMR findings. Under aerobic incubation, a 50% decrease in the polysaccharide proportion was observed. Under anaerobic conditions, significant chemical modifications of the organic fraction were detected, namely formation of low molecular weight organic acids.  相似文献   

19.
Using dog food as a model of the organic waste, thermophilic composting was carried out for 14 days at a fixed temperature of 60 degrees C. The relationship between organic matter decomposition measured by CO2 evolution during the bio-stabilization process and microbial succession expressed as the changes over time in the restriction fragment length polymorphism (RFLP) patterns of 16S rDNA sequences, of micro-organisms associated with the composting material was also examined. The CO2 evolution rate peaked on day 3 and gradually decreased until it became extremely small after day 9 of composting, indicating that vigorous organic matter decomposition ceased around this time. On the other hand, the RFLP pattern changed drastically from day 0 to day 4 or 5, then remained stable until day 7 or 8, reaching its final configuration, with little variations, after day 9 of composting. RFLP analysis therefore indicates that microbial succession continued into the later stage of composting. Nevertheless, by day 9, the rate of organic matter decomposition was so low that its influence on microbial populations could be hardly recognized by conventional methods of dilution plating. Moreover, the compost produced by day 9 showed no inhibitory effect on the growth of Komatsuna (Brassica campestris L. var. rapiferafroug), indicating that the maturity of compost is sufficient for plant growth when the rate of organic matter decomposition has become extremely low and the RFLP patterns become stable.  相似文献   

20.
One of the main disadvantages in the composting of two-phase olive mill wastes (TPOMW) is the long time required for its transformation (up to 40 weeks). The aim of this work was to evaluate the relationship between the degradation of the lignocellulosic fraction of TPOMW and the organic matter (OM) mineralisation rate in four composting piles prepared with different bulking agents and N-sources used to enhance OM degradation. The kinetics of degradation of the lignocellulosic fraction was compared to conventional maturation and stability indices to evaluate its impact on the duration of the composting process. The composition of bulking agents mainly affected the water-soluble fraction which influenced the OM degradation rate (linear or exponential OM degradation pattern) at early stages of the composting process but it neither modified the duration of the process (between 34 and 36 weeks) nor the total OM degradation underwent by the piles. The high initial mineral N availability was a key factor to significantly enhanced microbial activity. The mixture with urea as N-source registered the most efficient degradation of hemicellulose, cellulose and lignin, reducing the thermophilic phase and the total duration of TPOMW composting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号