首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel, produced from various vegetable and/or animal oils, is one of the most promising alternative fuels for transportation in Thailand. Currently, the waste oils after use in cooking are not disposed adequately. Such oils could serve as a feedstock for biodiesel which would also address the waste disposal issue. This study compares the life cycle greenhouse gas (GHG) emissions from used cooking oil methyl ester (UCOME) and conventional diesel used in transport. The functional unit (FU) is 100 km transportation by light duty diesel vehicle (LDDV) under identical driving conditions. Life cycle GHG emissions from conventional diesel are about 32.57 kg CO2-eq/FU whereas those from UCOME are 2.35 kg CO2-eq/FU. The GHG emissions from the life cycle of UCOME are 93% less than those of conventional diesel production and use. Hence, a fuel switch from conventional diesel to UCOME will contribute greatly to a reduction in global warming potential. This will also support the Thai Government's policy to promote the use of indigenous and renewable sources for transportation fuels.  相似文献   

2.
中国城镇污水处理厂温室气体排放时空分布特征   总被引:5,自引:2,他引:5  
城镇污水处理厂由于运行过程中能够大量产生二氧化碳(CO_2)、甲烷(CH_4)和氧化亚氮(N_2O),而被视为重要的人为温室气体释放源.采用基于污染物削减量的排放因子法建立了2014年中国城镇污水处理厂温室气体(CO_2、CH_4和N_2O)排放清单,并分析温室气体排放的时空分布和影响因素.结果表明,2014年中国城镇污水处理厂温室气体排放总量(以CO_2-eq计)为7 348.60 Gg,CO_2、CH_4和N_2O排放量分别为6 054.57 Gg、27.47 Gg(769.08 Gg,以CO_2-eq计)和1.98 Gg(524.95 Gg,以CO_2-eq计);各省份间排放量差异明显,华东地区排放量较高,西北地区排放量较低,西藏几乎没有排放,2005~2014年这10年间中国通过城镇污水处理厂排放的温室气体总量增长了229.4%,CO_2、CH_4和N_2O的涨幅分别为217.9%、217.9%和520.3%;地区经济的发展水平和污水处理量与当地城镇污水厂温室气体释放量相关性最大,人均蛋白质供应量与城镇污水厂N_2O产生量密切相关.  相似文献   

3.
We assessed the economic suitability of 4 greenhouse gas (GHG) mitigation options and one GHG offset option for an improvement of the GHG balance of a representative Swiss suckler cow farm housing 35 Livestock units and cultivating 25 ha grassland. GHG emissions per kilogram meat in the economic optimum differ between the production systems and range from 18 to 21.9 kg CO2-eq./kg meat. Only GHG offset by agroforestry systems showed the potential to significantly reduce these emissions. Depending on the production system agroforestry systems could reduce net GHG emissions by 66% to 7.3 kg CO2-eq./kg meat in the most intensive system and by 100% in the most extensive system. In this calculation a carbon sequestration rate of 8 t CO2/ha/year was assumed. The potential of a combination of the addition of lipids to the diet, a cover of the slurry tank and the application of nitrification inhibitors only had the potential to reduce GHG emissions by 12% thereby marginal abatement costs are increasing much faster than for agroforestry systems. A reduction of the GHG emissions to 7.5 kg CO2-eq./kg meat—possible with agroforestry only—raised costs between 0.03 CHF/kg meat and 0.38 CHF/kg meat depending on the production system and the state of the system before the reduction. If GHG emissions were reduced maximally average costs ranged between 0.37 CHF/kg meat, if agroforestry had the potential to reduce net GHG emissions to 0 kg CO2-eq., to 1.17 CHF/kg meat if also other options had to be applied.  相似文献   

4.
Carbon footprint (CFP) of sugar produced from sugarcane in eastern Thailand was estimated from greenhouse gas emissions (CO2, CH4, and N2O) during the sugarcane cultivation and milling process. The use of fossil fuels, chemical and organic fertilizer and sugarcane biomass data during cultivation were collected from field surveys, questionnaires and interviews. Sugar mill emissions, fossil fuel utilization and greenhouse gas emission from wastewater treatments were included. The results show that sugar production has a carbon footprint of 0.55 kg CO2e kg?1 sugar. This carbon footprint was a sum of 0.49 kg CO2e kg?1 sugar from sugarcane cultivation and 0.06 kg CO2e kg?1 sugar from the milling process. For the cultivation part, most of the GHGs emissions were from fertilizer, fossil fuel use and biomass burning. The CFP in eastern Thailand is sensitive to the type of data selected for calculation and of variations of farm inputs during sugarcane cultivation. There was no significant difference of CFP among farm sizes, although small farms tended to give a relatively higher CFP than that of medium and large farms.  相似文献   

5.
我国典型露地蔬菜生产中的温室气体排放   总被引:3,自引:0,他引:3  
张芬  程泰鸿  陈新平  王孝忠 《环境科学》2020,41(7):3410-3417
基于国家农业统计数据,以露地番茄、黄瓜、大白菜和萝卜为研究对象,应用生命周期评价(life cycle assessment,LCA)方法,定量化我国4种典型露地蔬菜生产中的净温室气体排放(net greenhouse gas emission,NGHGE),并比较蔬菜种类间、省域间净温室气体排放差异和分析减排措施.结果表明:我国典型露地蔬菜生产系统温室气体排放量远高于其带来的碳固定量,是净温室气体排放系统,生产单位面积露地番茄、黄瓜、大白菜和萝卜净温室气体排放(以CO_2-eq计)分别为4 149、 3 718、 3 780和2 427 kg·hm~(-2),不同种类露地蔬菜净温室气体排放差异大;我国典型露地蔬菜净温室气体排放空间差异大,其中,海南、云南、陕西和山东等省份番茄、黄瓜、大白菜和萝卜净温室气体排放高;肥料生产运输和施用是露地蔬菜温室气体排放的主要贡献因子,贡献率为86.8%~90.8%,因此改善肥料生产工艺降低肥料生产运输过程中的温室气体排放和根据露地蔬菜种类及种植地区优化肥料施用量是实现我国露地蔬菜可持续发展的重要措施.  相似文献   

6.
As one of the largest human activities, World Expo is an important source of anthropogenic Greenhouse Gas emission (GHG), and the GHG emission and other environmental impacts of the Expo Shanghai 2010, where around 59,397 tons of waste was generated during 184 Expo running days, were assessed by life cycle assessment (LCA). Two scenarios, i.e., the actual and expected figures of the waste sector, were assessed and compared, and 124.01 kg CO2-equivalent (CO2-eq.), 4.43 kg SO2-eq., 4.88 kg NO3--eq., and 3509 m3 water per ton tourist waste were found to be released in terms of global warming (GW), acidification (AC), nutrient enrichment (NE) and spoiled groundwater resources (SGWR), respectively. The total GHG emission was around 3499 ton CO2-eq. from the waste sector in Expo Park, among which 86.47% was generated during the waste landfilling at the rate of 107.24 kg CO2-eq., and CH4, CO and other hydrocarbons (HC) were the main contributors. If the waste sorting process had been implemented according to the plan scenario, around 497 ton CO2-eq. savings could have been attained. Unlike municipal solid waste, with more organic matter content, an incineration plant is more suitable for tourist waste disposal due to its high heating value, from the GHG reduction perspective.  相似文献   

7.
Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop production. The surplus area could be used for energy production without affecting the land use necessary for food and feed production. We built a model to investigate the effect of changing nitrogen (N) fertilizer rates on cropping area required for a given amount of crops. We found that an increase in nitrogen fertilizer supply is only justified if GHG mitigation with additional land is higher than 9–15 t carbon dioxide equivalents per hectare (CO2-eq../ha). The mitigation potential of bioenergy production from energy crops is most often not in this range. Hence, from a GHG abatement point of view land should rather be used to produce crops at moderate fertilizer rate than to produce energy crops. This may change if farmers are forced to reduce their N input due to taxes or governmental regulations as it is the case in Denmark. However, with a fertilizer rate 10 % below the economical optimum a reduction of N input is still more effective than the production of bioenergy unless mitigation effect of the bioenergy production exceeds 7 t carbon dioxide (CO2)-eq../ha. An intensification of land use in terms of N supply to provide more land for bioenergy production can only in exceptional cases be justified to mitigate GHG emissions with bioenergy under current frame conditions in Germany and Denmark.  相似文献   

8.
华北平原不同生产模式设施蔬菜生命周期环境影响评价   总被引:1,自引:2,他引:1  
徐强  胡克林  李季  韩卉  杨合法 《环境科学》2018,39(5):2480-2488
全面系统地评价不同生产模式下设施蔬菜生产过程的环境效应,可为降低蔬菜生产过程中的负面环境影响提供理论指导.本文以华北平原河北省曲周县4 a春茬设施茄子生产为例,采用田间实测结合生命周期评价的方法,分析和比较了该地区常规、综合和有机生产模式下设施茄子的生产过程及其对环境的影响.结果表明,3种模式的水体毒性、富营养化和土壤毒性危害潜势对环境影响的贡献较大,分别占82.05%~84.02%、10.29%~12.32%和2.62%~3.48%,且主要发生在农作子系统中,均主要是由氮磷流失、农药残留及有机肥所携带的重金属所致.综合模式的环境影响综合指数最低,为0.596,分别比常规和有机模式降低了30.3%和6.7%,该模式显著降低了设施蔬菜农作子系统的污染物排放,为最佳生产模式.因此,优化田间管理措施(如施用生物农药、优质有机肥和提高氮磷利用效率)可较好地控制蔬菜生产生命周期负面环境影响及提高该地区设施蔬菜生产的环境可持续能力.  相似文献   

9.
CH4和CO2是大气中主要的温室气体,研究我国城市生活垃圾处理过程中二者的排放情况,对制订温室气体减排政策和应对气候变化有着至关重要的意义. 利用IPCC(政府间气候变化专门委员会)提供的废弃物处理排放CH4和CO2的计算方法,对1979—2011年我国城市生活垃圾处理CH4和CO2排放量(不含港澳台数据)进行统计分析. 结果表明:①2011年我国城市生活垃圾人均清运量为0.46 t,比2000年增加了53.3%. ②1979—2011年,我国城市生活垃圾处理仍以填埋为主,焚烧和堆肥处理方式相对较少,但近年来焚烧处理量呈逐年增加趋势,其中2011年焚烧处理量是2001年的16.8倍. ③我国城市生活垃圾处理产生的CH4和CO2排放量均呈逐年增长趋势,至2011年,二者分别达到7 024.03×104 (以CO2当量计,下同)和706.22×104 t;其中,2011年CH4排放量是1990年的20.0倍,CO2排放量是2001年的16.8倍. ④城市生活垃圾产生的温室气体排放具有明显的地域特性,其中华东地区CH4和CO2排放总量高达2 570.98×104 t;西北地区最小,仅为482.3×104 t. 该差异与城市发展规模、人们生活习惯和城市化进程等影响因子紧密相关.   相似文献   

10.
As one of the largest human activities, World Expo is an important source of anthropogenic Greenhouse Gas emission (GHG), and the GHG emission and other environmental impacts of the Expo Shanghai 2010, where around 59,397 tons of waste was generated during 184 Expo running days, were assessed by life cycle assessment (LCA). Two scenarios, i.e., the actual and expected figures of the waste sector, were assessed and compared, and 124.01 kg CO2-equivalent (CO2-eq.), 4.43 kg SO2-eq., 4.88 kg NO3-eq., and 3509 m3 water per ton tourist waste were found to be released in terms of global warming (GW), acidification (AC), nutrient enrichment (NE) and spoiled groundwater resources (SGWR), respectively. The total GHG emission was around 3499 ton CO2-eq. from the waste sector in Expo Park, among which 86.47% was generated during the waste landfilling at the rate of 107.24 kg CO2-eq., and CH4, CO and other hydrocarbons (HC) were the main contributors. If the waste sorting process had been implemented according to the plan scenario, around 497 ton CO2-eq. savings could have been attained. Unlike municipal solid waste, with more organic matter content, an incineration plant is more suitable for tourist waste disposal due to its high heating value, from the GHG reduction perspective.  相似文献   

11.
This article compares the use of glulam beams at the new airport outside Oslo with an alternative solution in steel in order to (1) make an inventory of greenhouse gas (GHG) emissions and energy use over the life cycle of glulam and of steel, (2) calculate the avoided GHG emissions and the cost of the substitution, and (3) analyse which factors have the strongest influence on the results. Compared to previous analyses of substitution between steel and glulam related to greenhouse gas emissions, this article brings in three new methodological elements: combining traditional life-cycle analysis with economic costs, considering explicitly the emissions’ points in time, and using discounted global warming potential (DGWP).The total energy consumption in manufacturing of steel beams is two to three times higher and the use of fossil fuel 6–12 times higher than in the manufacturing of glulam beams. Manufacturing of steel in the most likely scenario gives five times higher GHG emissions compared to manufacturing of glulam beams. Waste handling of glulam can either be very favourable or unfavourable compared to steel depending on the glulam being landfilled or used for energy production. Other assumptions that substantially affect the results over the life cycle are carbon fixation on the forest land that is regenerated after harvesting, whether the steel production is scrap-based or ore-based, and which energy sources are used for producing the electricity used by the steel industry. The uncertainty in the inventory data for glulam do not influence the results much compared to changes in these main assumptions. The glulam construction cannot be more than 1–6% more expensive than steel before the price per ton avoided greenhouse gas emissions becomes high compared to the present Norwegian CO2-tax on gasoline. In the most likely scenario, and not including carbon fixation on forest land, 0.24–0.31 tons of CO2-equivalents per cubic metre input of sawn wood in glulam production is avoided by using glulam instead of steel, whereas this figure increases to 0.40–0.97 t/m3 if carbon fixation on forest land is included. Using DGWP does not influence the results of the analysis significantly.  相似文献   

12.
Estimates of regional greenhouse gas emissions from agricultural systems are needed to evaluate possible mitigation strategies with respect to environmental effectiveness and economic feasibility. Therefore, in this study, we used the GIS-coupled economic-ecosystem model EFEM–DNDC to assess disaggregated regional greenhouse gas (GHG) emissions from typical livestock and crop production systems in the federal state of Baden-Württemberg, Southwest Germany. EFEM is an economic farm production model based on linear programming of typical agricultural production systems and simulates all relevant farm management processes and GHG emissions. DNDC is a process-oriented ecosystem model that describes the complete biogeochemical C and N cycle of agricultural soils, including all trace gases.Direct soil emissions were mainly related to N2O, whereas CH4 uptake had marginal influence (net soil C uptake or release was not considered). The simulated N2O emissions appeared to be highly correlated to N fertilizer application (R2 = 0.79). The emission factor for Baden-Württemberg was 0.97% of the applied N after excluding background emissions.Analysis of the production systems showed that total GHG emissions from crop based production systems were considerably lower (2.6–3.4 Mg CO2 eq ha−1) than from livestock based systems (5.2–5.3 Mg CO2 eq ha−1). Average production system GHG emissions for Baden-Württemberg were 4.5 Mg CO2 eq ha−1. Of the total 38% were derived from N2O (direct and indirect soil emissions, and manure storage), 40% were from CH4 (enteric fermentation and manure storage), and 22% were from CO2 (mainly fertilizer production, gasoline, heating, and additional feed). The stocking rate was highly correlated (R2 = 0.85) to the total production system GHG emissions and appears to be a useful indicator of regional emission levels.  相似文献   

13.
A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons C02 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m3, and public water supplies of 0.067 kg CO2 eq./m3. Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement.  相似文献   

14.
Using the organic fraction of municipal solid waste (OFMSW) for biogas production might contribute to greenhouse gas mitigation, but emissions linked with biogas production can reduce these beneficial effects. Therefore the emissions of NH3, CH4 and N2O and costs caused by treating OFMSW by co-fermentation with slurry were calculated in detail from literature data, and strategies for reducing emissions were evaluated. Emission factors were calculated for single gases during storage and after application. The sensitivity of the calculations concerning the organic dry matter content of OFMSW, retention time and CH4-yield was analyzed. The anaerobic co-fermentation of OFMSW increased biogas yields and contributed to the reduction of CO2 emissions with 32 to 152 kg CO2 t−1 organic waste depending on application and storage techniques used for the fermentation residues. Considering a payment of 0.1 €/kWh for the electricity produced, the costs for utilization of OFMSW in slurry based biogas plants were calculated to range between 34 and 38  t−1. Measures for mitigating greenhouse gas emissions by covering the fermentation residue stores proved to be more cost effective with 3–31  t−1 CO2 compared to immediate harrowing or injecting the residues during field application.  相似文献   

15.
为了研究不同坝型对环境造成的影响,采用混合生命周期评价方法定量分析并比较同规模的重力坝和堆石坝水电枢纽布置在全生命周期内的温室气体排放.研究基于糯扎渡工程实例,生命周期考虑材料设备生产阶段、运输阶段、施工阶段和运行维护阶段.结果表明:重力坝方案和堆石坝方案生命周期温室气体排放量分别为1145.49×104和815.85×104t(以CO2当量计),重力坝比堆石坝多排放40.4%.其中,重力坝在生产、运输和运行阶段的碳足迹比堆石坝大,但堆石坝在施工阶段的碳足迹比重力坝大.运行阶段的温室气体排放量占全生命周期碳足迹的比例最大,其次是材料设备生产阶段、施工阶段和运输阶段.糯扎渡水电工程的碳排放因子明显低于火电碳排放因子,合理开展水电建设,是实现我国"十二五"规划碳减排目标的有效途径.  相似文献   

16.
Steel dominates the global metal production accounting for 5 % of increase in Earth’s atmospheric carbon dioxide (CO2). Today, India is the 4th largest producer of crude steel in the world. The sector contributes around 3 % to the country’s gross domestic product (GDP) but adds 6.2 % to the national greenhouse gas (GHG) load. It accounts for 28.4% of the entire industry sector emissions, which are 23.9% of the country’s total emissions. Being a developing country, India is not obliged to cut its emissions under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (FCCC), but gave voluntary commitment to reduce the emission intensity of its GDP by 20–25 % from the 2005 level by 2020. This paper attempts to find out if the Indian steel sector can help the country in fulfilling this commitment. The sector reduced its CO2 emissions per ton of steel produced by 58% from 1994 to 2007. The study generates six scenarios for future projections which show that the sector can reduce its emission intensity by 12.5 % to 63 %. But going by the conservative estimates, the sector can reduce emission intensity by 30 % to 53 %. However, actual emissions will go up significantly in every case.  相似文献   

17.
Biogas treatment of animal manures is an upcoming technology because it is a way of producing renewable energy (biogas). However, little is known about effects of this management strategy on greenhouse gas (GHG) emissions during fermentation, storage, and field application of the substrates compared to untreated slurries. In this study, we compared cattle slurry and cattle slurry with potato starch as additive during the process of fermentation, during storage and after field application. The addition of potato starch strongly enhanced CH4 production from 4230 l CH4 m−3 to 8625 l CH4 m−3 in the fermenter at a hydraulic retention time (HRT) of 29 days. Extending the HRT to 56 days had only a small effect on the CH4 production. Methane emissions from stored slurry depended on storage temperature and were highest from unfermented slurry followed by the slurry/starch mixture. Gas emissions from untreated and fermented slurry during storage were further analyzed in a pilot-scale experiment with different levels of covering such as straw cover, a wooden lid and no cover. Emissions of greenhouse gases (CH4, N2O, NH3) were in the range of 14.3–17.1 kg CO2 eq. m−3 during winter (100 day storage period) and 40.5–90.5 kg CO2 eq. m−3 during summer (140 day storage period). A straw cover reduced NH3 losses, but not overall GHG emissions, whereas a solid cover reduced CH4 and NH3 emissions. After field application, there were no significant differences between slurry types in GHG emissions (4.15–8.12 kg CO2 eq. m−3 a−1). GHG emissions from slurry stores were more important than emissions after field application. Co-digestion of slurry with additives such as starch has a large potential to substitute fossil energy by biogas. On a biogas plant, slurry stores should be covered gas-tight in order to eliminate GHG emissions and collect CH4 for electricity production.  相似文献   

18.
A streamlined hybrid life cycle assessment is conducted to compare the global warming potential (GWP) and primary energy use of conventional and organic wheat production and delivery in the US. Impact differences from agricultural inputs, grain farming, and transport processes are estimated. The GWP of a 1 kg loaf of organic wheat bread is about 30 g CO2-eq less than the conventional loaf. When organic wheat is shipped 420 km farther to market, organic and conventional wheat systems have similar impacts. These results can change dramatically depending on soil carbon accumulation and nitrous oxide emissions from the two systems. Key parameters and their variability are discussed to provide producers, wholesale and retail consumers, and policymakers metrics to align their decisions with low-carbon objectives.  相似文献   

19.
Livestock [inclusive of ruminant species, namely cattle (Bos Taurus and Bos indicus), sheep (Ovis aries), goats (Capra hircus), and buffaloes (Bubalus bubalis), and non-ruminant species, namely pigs (Sus scrofa domesticus) and chickens (Gallus domesticus)] are both affected by climate change and contribute as much as 14.5 % of global anthropogenic greenhouse gas (GHG) emissions, most of which is from ruminant animals (Gerber et al. 2013). This study aims to estimate the marginal costs of reducing GHG emissions for a selection of practices in the ruminant livestock sector (inclusive of the major ruminant species—cattle, sheep, and goats) globally. It advances on previous assessments by calculating marginal costs rather than commonly reported average costs of abatement and can thus provide insights about abatement responses at different carbon prices. We selected the most promising abatement options based on their effectiveness and feasibility. Improved grazing management and legume sowing are the main practices assessed in grazing systems. The urea (CO(NH2)2) treatment of crop straws is the main practice applied in mixed crop–livestock systems, while the feeding of dietary lipids and nitrates are confined to more intensive production systems. These practices were estimated to reduce emissions by up to 379 metric megatons of carbon dioxide (CO2) equivalent emissions per year (MtCO2-eq yr?1). Two thirds of this reduction was estimated to be possible at a carbon price of 20 US dollars per metric ton of CO2 equivalent emissions ($20 tCO2-eq?1). This study also provides strategic guidance as to where abatement efforts could be most cost effectively targeted. For example, improved grazing management was particularly cost effective in Latin America and Sub-Saharan Africa, while legume sowing appeared to work best in Western Europe and Latin America.  相似文献   

20.
The cement industry is one of the largest carbon dioxide (CO2) emitters in the Thai industry. The cement sector accounted for about 20,633 kilotonnes (ktonnes) CO2 emissions in 2005 in Thailand. A bottom-up CO2 abatement cost curve (ACC) is constructed in this study for the Thai cement industry to determine the potentials and costs of CO2 abatement, taking into account the costs and CO2 abatement of different technologies. The period of 2010–2025 is chosen as the scenario period. We analyzed 41 CO2 abatement technologies and measures for the cement industry. Using the bottom-up CO2 ACC model, the cost-effective annual CO2 abatement potential for the Thai cement industry during the 15 year scenario period (2010–2025) is equal to 3095 ktonnes CO2/year. This is about 15% of the Thai cement industry’s total CO2 emissions in 2005. The total technical annual CO2 abatement potential is 3143 ktonnes CO2/year, which is about 15.2% of the Thai cement industry’s total CO2 emissions in 2005. We also conducted a sensitivity analysis for the discount rate parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号