首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y(obs)) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y(obs) was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y(obs) to decrease significantly from 0.32 mg VSS/mg COD at HRT 2d to 0.04 mg VSS/mg COD at HRT 12d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d(-1) (series 3) to 0.032 d(-1) (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary, in the activated sludge at long HRT, a short filling period and operating cycle of the reactor with the mixing and aeration phases seem the most favourable.  相似文献   

2.
The behaviour of heavy metals was studied by carrying out a series of experiments with an activated sludge biological reactor (with pure oxygen), fed with different types of landfill leachate. The leachates used had been previously treated by the wet oxidation process and also by ammonia stripping. The experimentation aims were to evaluate both BOD and COD removal rates and the distribution of heavy metals concentrations between the liquid and solid phases. This latter data was used to confirm a mathematical model which predicts the distribution of heavy metals between the liquid and solid phases of a biological process.  相似文献   

3.
The degradation rate of dioxins added to the activated sludge from a leachate treatment plant of a landfill under denitrification conditions was estimated using six bioreactors. Over 99% of the added dioxins (600ng) were degraded within 7 days. Furthermore, continuous cultivation was carried out for 1 month. The activated sludge degraded 600ng of dioxins (that is, all of the added dioxins) placed in each reactor every 7 days, and this activity was maintained for 35 days. Under aerobic conditions with this sludge, the dioxins were not degraded in 7 days, but 90% of the 600ng of dioxins was degraded in 35 days. The high level of activity observed in the present study may only occur under anaerobic conditions, especially under denitrifying conditions.  相似文献   

4.
The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.  相似文献   

5.
The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400mg O(2)dm(-3), in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1cm(3)dm(-3) of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented approximately 16% of the volume of the treated sludge.  相似文献   

6.
Journal of Material Cycles and Waste Management - Landfill leachates contain a variety of contaminants including phosphorus, whose entry into the surface waters should be restricted given the...  相似文献   

7.
The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63kgCODm(-3)d(-1). In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl(3) to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10lg(-1) COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified.  相似文献   

8.
This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varying organic concentrations of the influent leachate (2500-9000mgL(-1)). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24h and a rotational speed of 6rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273g-COD m(-3) day(-1) at an HRT of 54, 44, 39, 24 and 17h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.  相似文献   

9.
10.
To enhance the anaerobic digestion of municipal waste-activated sludge (WAS), ultrasound, thermal, and ultrasound + thermal (combined) pretreatments were conducted using three ultrasound specific energy inputs (1000, 5000, and 10,000 kJ/kg TSS) and three thermal pretreatment temperatures (50, 70 and 90 °C). Prior to anaerobic digestion, combined pretreatments significantly improved volatile suspended solid (VSS) reduction by 29-38%. The largest increase in methane production (30%) was observed after 30 min of 90 °C pretreatment followed by 10,000 kJ/kg TSS ultrasound pretreatment. Combined pretreatments improved the dimethyl sulfide (DMS) removal efficiency by 42-72% but did not show any further improvement in hydrogen sulfide (H2S) removal when compared with ultrasound and thermal pretreatments alone. Economic analysis showed that combined pretreatments with 1000 kJ/kg TSS specific energy and differing thermal pretreatments (50-90 °C) can reduce operating costs by $44-66/ton dry solid when compared to conventional anaerobic digestion without pretreatments.  相似文献   

11.
The mathematical formulations in a one-dimensional compartment model of the biodegradation of organic landfill components are described. The model is designed to switch between anaerobic and aerobic conditions, depending on the local oxygen concentration. The model also includes the effect of environmental factors, such as moisture content, pH, and temperature, on reaction rates. The model includes not only biodegradation processes for carbon compounds (acetate, CO2, CH4), but also for nitrogen compounds involved in nitrification and denitrification due to their significance in landfills. Two example runs to simulate anaerobic and aerobic waste were conducted for a single landfill unit cell by changing the organic content and diffusion coefficient.  相似文献   

12.
Anaerobic co-digestion of four organic waste streams; a thickened waste activated sludge (TWAS) and screen cake (SC) from a fruit-juice/winery wastewater treatment plant along with municipal sludge cake (MC) and landfill leachate (LL) was evaluated. A total of eight semi-continuously-fed single and co-digesters were operated side-by-side at sludge retention times (SRT) of 20 and 10 days. Co-digestion of industrial waste streams (TWAS and SC) with MC and LL resulted in increased operational stability compared to the single digestion of industrial TWAS at the higher organic loading (10 d SRT). Although digester operational temperature had no statistically significant effect on organics removal and biogas production, mesophilic digesters had consistently higher total coliform densities (8838–37,959 most probable number or MPN/g-dry weight) compared to the thermophilic digesters (41–6723 MPN/g-dry weight) at both SRTs. Coliform analysis results also proved that most of the thermophilic digestates could be classified as Class A biosolids according to regulations. Furthermore, addition of industrial TWAS to co-digesters enhanced the dewaterability of the digested streams. A cost-benefit analysis confirmed the benefits and indicated that a full-scale co-digester utilizing all four waste streams can decrease the total capital and operational cost by 22% ($10.52 million).  相似文献   

13.
Journal of Material Cycles and Waste Management - The study conducted basic component analyses including three component analyses, elementary analysis and heavy metal content and BMP test according...  相似文献   

14.
Low-cost treatment of landfill leachate using peat   总被引:6,自引:0,他引:6  
The EU Landfill Directive obliges member states to collect and treat leachate from landfill sites. In regions of high population density, this is commonly achieved through discharge of the leachate to the municipal sewerage system. In Ireland, rural landfills can be a long distance from a suitable sewerage system, resulting in high transportation costs. On-site treatment systems, when used elsewhere, are mainly aerobic treatment systems, which are costly to construct and operate. There is a particular need for low-cost, low-maintenance leachate treatment systems for small low-income landfills, and for closed landfills, where long-term running costs of aerobic systems may be unsustainable. In 1989, this research work was initiated to investigate the use of local peat for the treatment of leachate from a small rural landfill site. In 1997, following the award of grant-aid under the EU LIFE Programme, a full-scale leachate treatment plant was constructed, using local un-drained peat as the treatment medium. When the LIFE Project ended in February 2001, leachate treatment research continued at the site using a pre-treated peat as the treatment medium. The treatment levels achieved using both types of peat are discussed in this paper. It is concluded that landfill leachate may be successfully treated using a low-cost peat bed to achieve almost 100% removal of both BOD and ammonia.  相似文献   

15.
The effectiveness of Fenton process in municipal landfill leachate treatment, as a pre- or post-treatment approach, has been demonstrated. However, no general recommendations of universal validity could be made in the term of optimized conditions affecting Fenton process. At the first stage of this study, collected leachate samples from Aradkooh site, Tehran, Iran, were investigated using one-factor-at-a-time method to find out optimum coagulation pH and flocculation time values. Subsequently, the obtained results in addition to data issued previously by the authors were employed to develop a predictive model of the true response surface, namely chemical oxygen demand (COD) removal efficiency. Finally, the main parameters of Fenton procedure, i.e. initial pH, [H(2)O(2)]/[Fe(2+)] molar ratio, Fe(2+) dosage, and coagulation pH were optimized taking advantage of the above-mentioned quadratic model. The derived second-order model included both significant linear and quadratic terms and seemed to be adequate in predicting responses (R(2)=0.9896 and prediction R(2)=0.6954). It was found that the interaction between initial pH and Fe(2+) dosage has a significant effect on COD removal. While, the optimal [H(2)O(2)]/[Fe(2+)] molar ratio was independent of ferrous ion dosage. The optimum conditions for the maximum COD removal of 50.76% for the parameters of initial pH, [H(2)O(2)]/[Fe(2+)] molar ratio, Fe(2+) dosage, and coagulation pH were found to be 5.8, 8.0, 22,500mg/L, and 8.7 respectively.  相似文献   

16.
A series of processes by biofilter and Fenton oxidation to treat mature landfill leachate has been devised. At a hydraulic loading rate of 20 l m?3 d?1, a biofilter packed with aged refuse is found to remove 80% of chemical oxygen demand (COD), 89% of ammonia nitrogen and 96% of total phosphorus (TP). Particularly, TP levels dropped below 1 mg l?1. The optimal condition for Fenton oxidation was selected to be an initial pH of 5, a dosage of 0.01 and 0.02 mol l?1 of FeSO4 and H2O2, respectively, and a duration of 3 h, where COD removal efficiency reaches 58.6%, and BOD5/COD ratio is raised from 0.05 to 0.20. Subsequent treatment by a biofilter packed with slag reduces COD, ammonia nitrogen levels to less than 100, 25 mg l?1, respectively. A pilot scale experiment conducted in situ demonstrates that this series of processes exhibits a high efficiency in removing pollutants from mature landfill leachate and it is viable for application.  相似文献   

17.
The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2–8.0 kg volatile solid (VS) (m3 d)?1, with VS reduction rates of 61.7–69.9%, and volumetric biogas production of 0.89–5.28 m3 (m3 d)?1. A maximum methane production rate of 2.94 m3 (m3 d)?1 was achieved at OLR of 8.0 kg VS (m3 d)?1 and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m3 d)?1. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.  相似文献   

18.
19.
This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.  相似文献   

20.
An experiment was undertaken to examine the response of hydroponically-grown red maple (Acer rubrum L.) saplings to a series of four flooding (sub-irrigation) treatments distributed over a 25-day period with an untreated (saline) municipal solid waste landfill leachate or deionized water. Net photosynthesis rates measured for water-treated saplings rapidly declined to 62% of the levels measured in untreated (control) saplings, but returned to pre-treatment levels with subsequent flooding treatments. Net photosynthesis rates measured for leachate-treated saplings decreased to about 50% of the levels measured for control saplings over the 25-day treatment period, and remained suppressed. Loss of turgor in leaves and a iron-oxyhydroxide plaque on root surfaces were also observed. Reasons proposed for this acute and apparently irreversible response to leachate exposure include: (i) extreme root anaerobiosis conditions caused by root system flooding and exacerbated by a high chemical oxygen demand leachate; (ii) increased root-soil interface resistance to transpiration water flow (osmotic potential gradient, iron oxyhydroxide plaque); (iii) metabolic intolerance to high solute concentrations in plant tissue; and (iv) exposure to potentially toxic volatile organic compounds. Water sub-irrigation had virtually no effect on nutrient and non-nutrient element concentrations in foliage or on the spectral reflectance characteristics of the leaves. Leachate treatment decreased the foliar content of many plant macro- and micro-nutrients significantly, and shifts in spectral reflectance patterns indicated declining plant vigour. Certain chemical constituents present in high concentrations in the leachate irrigant and which can be phytotoxic, such as Cl, accumulated to a significant degree in leachate-treated plant tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号