首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies of leachate-induced ecotoxicity have focused on crude samples, while little attention has been given to changes in biotoxicity resulting from the environmental behavior of landfill leachate. Therefore, we set up a soil column to simulate the underground penetration of leachate into the soil layer, define the rules of migration and transformation of leachate pollutants, and determine the variation in toxicity of landfill leachate during penetration. The results demonstrated that: (1) landfill leachate inhibited the growth and chlorophyll levels, elevated the levels of lipid peroxidation and protein oxidation, and stimulated the antioxidant enzyme activities of barley seedlings. The effects generally displayed a peak value at 12–24 cm, slowly declined at 36–48 cm, and then rapidly decreased with penetrating distance in the column. (2) Statistical correlation analysis of the properties of leachate and the observed biotoxic effects revealed that COD, conductivity and heavy metals (esp. Ni, Mn, Cd) were positively correlated with variations in biotoxicity. (3) The microbial activity of outflowing leachate sampled from the 48 cm port was significantly higher than the activity from succedent ports, and the types of contaminants increased in the leachate outflowing from the same port, implying that microbial behaviors near the 48 cm port could be used to partially evaluate variations in the composition and biotoxicity of landfill leachate. Taken together, the above results illustrate the polluting characteristics of landfill leachate when penetrating a soil column and provide guidance for pollution control and risk assessment of landfill leachate.  相似文献   

2.
A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers’ landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials.  相似文献   

3.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   

4.
Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.  相似文献   

5.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

6.
Recirculation of leachate on a covered landfill site planted with willows or other highly evapotranspirative woody plants is an inexpensive option for leachate management. In our study, a closed landfill leachate recirculation system was established on a rehabilitated municipal solid waste landfill site with planted landfill cover. The main objective of the study was to evaluate the sustainability of the system with regard to high hydraulic loads of the landfill leachate on the landfill cover and high concentrations of saline ions, especially potassium (K+), sodium (Na+) and chloride (Cl?), in leachate.The results of intensive monitoring, implemented during May 2004 and September 2007, including leachate, soil and plant samples, showed a high sustainability of the system regarding saline ions with the precipitation regime of the studied region. Saline ion concentrations in leachates varied between 132 and 2592 mg Cl? L?1, 69 and 1310 mg Na+ L?1 and between 66 and 2156 mg K+ L?1, with mean values of 1010, 632 and 686 mg L?1, respectively. Soil salinity, measured as soil electrical conductivity (EC), remained between 0.17 and 0.38 mS cm?1 at a depth between 0 and 90 cm. An average annual precipitation of 1000 mm provided sufficient leaching of saline ions, loaded by irrigation with landfill leachate, from the soil of the landfill cover and thus prevented possible salinity shocks to the planted willows.  相似文献   

7.
Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005–June 2006) were 0.86–6.2 m3 ha?1 h?1. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1–3 points showed significantly higher methane fluxes into the soil cover (20–135 m3 ha?1 h?1) and methane emissions (6–135 m3 ha?1 h?1) compared to the other points (<20 m3 ha?1 h?1 and <10 m3 ha?1 h?1, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.  相似文献   

8.
Open dumping is the most common practice for the disposal of urban solid wastes in the least developed regions of Africa, Asia and Latin America. Sanitary landfill design and operation has traditionally focused on large cities, but cities with fewer than 50,000 in population can comprise from 6% to 45% of a given country’s total population. These thousands of small cities cannot afford to operate a sanitary landfill in the way it is proposed for large cities, where heavy equipment is used to spread and compact the waste in daily cells, and then to excavate, transport and apply daily cover, and leachate is managed with collection and treatment systems. This paper presents an alternative approach for small cities, known as the semi-mechanized trench method, which was developed in Villanueva, Honduras. In the semi-mechanized trench method a hydraulic excavator is used for 1–3 days to dig a trench that will last at least a month before it is filled with waste. Trucks can easily unload their wastes into the trench, and the wastes compact naturally due to semi-aerobic biodegradation, after which the trenches are refilled and covered. The exposed surface area is minimal since only the top surface of the wastes is exposed, the remainder being covered by the sides and bottom of the trench. The surplus material from trench excavation can be valorized for use as engineering fill onsite or off. The landfill in Villanueva has operated for 15 years, using a total land area of approximately 11 ha for a population that grew from 23,000 to 48,000, with a land requirement of 0.2 m2/person year, a cover to waste ratio of 0.2, and an estimated soil surplus of 298,000 m3 that is valorized and used onsite. The landfill has been operated solely by the municipality with an operational cost in 2010 estimated at US$4.60 per ton. A modified water balance analysis at Villanueva shows negligible leachate generation from covered trenches and 700 m3/yr (60 m3/ha yr) from the two open trenches required for daily operation. If the site were an open dump, however, leachate generation is estimated to be 3900 m3/ha yr and contaminated runoff 5000 m3/ha yr. A simple model used to estimate dilution of generated leachate based on groundwater flow data and aquifer stratigraphy suggests that the leachate will be diluted by a factor of 0.01 in the aquifer. Leachate contaminants will not accumulate because the aquifer discharges to the Ulua River 2 km south of the landfill. While not suitable for all sites, the Villanueva method nevertheless serves as an excellent example of how a small city landfill with natural compaction of waste and attenuation of leachate can be sustainably operated.  相似文献   

9.
The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute elevated contaminant levels to e-waste, we do not recommend continued disposal of e-waste in old landfills that were not originally designed to contain leachates. The survey also revealed temporal variation in the electrical conductivity and concentrations of As, Cd and Pb present in leachates of landfills in arid Mediterranean climates. These results are consistent with the marked variations in rainfall patterns observed for such climates. The solute concentration (EC and other ions including As, Cd and Pb) declines in the leachates during wet winter months (June to September), in contrast to tropical countries where such changes are observed during wet summer months.  相似文献   

10.
Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.  相似文献   

11.
Landfill leachate (LL) usually contains low concentrations of heavy metals due to the anaerobic conditions in the methanogenic landfill body after degradation of easily degradable organic matter and the neutral pH of LL, which prevents mobilization and leaching of metals. Low average concentrations of metals were also confirmed in our extensive study on the rehabilitation of an old landfill site with vegetative landfill cover and LL recirculation after its treatment in constructed wetland. The only exception was chromium (Cr). Its concentrations in LL ranged between 0.10 and 2.75 mg/L, and were higher than the concentrations usually found in the literature. The objectives of the study were: (1) to understand why Cr is high in LL and (2) to understand the fate and transport of Cr in soil and vegetation of landfill cover due to known Cr toxicity to plants. The total concentration of Cr in LL, total and exchangeable concentrations of Cr in landfill soil cover and Cr content in the plant material were extensively monitored from May 2004 to September 2006. By obtained data on Cr concentration in different landfill constituents, supported with the data on the amount of loaded leachate, amount of precipitation and potential evapotranspiration (ETP) during the performance of the research, a detailed picture of time distribution and co-dependency of Cr is provided in this research. A highly positive correlation was found between concentrations of Cr and dissolved organic carbon (r = 0.875) in LL, which indicates the co-transport of Cr and dissolved organic carbon through the system. Monitoring results showed that the substrate used in the experiment did not contribute to Cr accumulation in the landfill soil cover, resulting in percolation of a high proportion of Cr back into the waste layers and its circulation in the system. No negative effects on plant growth appeared during the monitoring period. Due to low uptake of Cr by plants (0.10–0.15 mg/kg in leaves and 0.05–0.07 mg/kg in stems of Salix purpurea), the estimated Cr offtake from LL by plants represented only a small proportion of the LL Cr mass load during the observation period, resulting in no dispersion of Cr into the environment through leaf drop.  相似文献   

12.
The dynamics and changes in the potential activity and community structure of methanotrophs in landfill covers, as a function of time and depth were investigated. A passive methane oxidation biocover (PMOB-1) was constructed in St-Nicéphore MSW Landfill (Quebec, Canada). The most probable number (MPN) method was used for methanotroph counts, methanotrophic diversity was assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting of the pmoA gene and the potential CH4 oxidation rate was determined using soil microcosms. Results of the PMOB-1 were compared with those obtained for the existing landfill cover (silty clay) or a reference soil (RS). During the monitoring period, changes in the number of methanotrophic bacteria in the PMOB-1 exhibited different developmental phases and significant variations with depth. In comparison, no observable changes over time occurred in the number of methanotrophs in the RS. The maximum counts measured in the uppermost layer was 1.5 × 109 cells g dw?1 for the PMOB-1 and 1.6 × 108 cells g dw?1 for the RS. No distinct difference was observed in the methanotroph diversity in the PMOB-1 or RS. As expected, the potential methane oxidation rate was higher in the PMOB-1 than in the RS. The maximum potential rates were 441.1 and 76.0 μg CH4 h?1g dw?1 in the PMOB and RS, respectively. From these results, the PMOB was found to be a good technology to enhance methane oxidation, as its performance was clearly better than the starting soil that was present in the landfill site.  相似文献   

13.
Methane (CH4) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH4 to the atmosphere. To quantify in situ rates of CH4 oxidation we performed five gas push–pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH4, O2 and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH4 with either Ar or CH4 itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH4 oxidation. The maximum calculated first-order rate constant was 24.8 ± 0.8 h?1 at location 1 and 18.9 ± 0.6 h?1 at location 2. In general, location 2 had higher background CH4 concentrations in vertical profile samples than location 1. High background CH4 concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH4 in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH4 oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH4 oxidation in a landfill-cover soil when background CH4 concentrations were low.  相似文献   

14.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

15.
Because of low investment and operational costs, interest is increasing in the use of willow plants in landfill leachate disposal. Toxic effects of leachate on the plants should be avoided in the initial period of growth and phytotoxicological testing may be helpful to select appropriate leachate dose rates. The aim of this study was to determine the phytotoxicity of landfill leachate on young willow (Salix amygdalina L.) cuttings, as a criterion for dose rate selection in the early phase of growth. Over a test period of 6 weeks plants were exposed to six concentrations of landfill leachate solutions (0%; 6.25%; 12.5%; 25%; 50% and 100%), under two different regimes. In regime A willow plants were cultivated in leachate solution from the beginning, whereas in regime B they were grown initially in clean water for 4 weeks, after which the water was exchanged for leachate solutions. The lowest effective concentration causing toxic effects (LOEC) was calculated (p < 0.05). In regime A LOEC was between 5.44% and 6.50% of leachate concentration, but slightly higher in regime B (5.32–6.59%). Willow plants were able to survive in landfill leachate solutions with electrical conductivity (EC) values up to 5.0 mS/cm in regime A, whereas in regime B plants were killed when EC exceeded 3.0 mS/cm. This indicates an ability of willow plants to tolerate higher strengths of landfill leachate if they are cultivated in such concentrations from the beginning.  相似文献   

16.
This paper investigates the potential of converting sewage sludge into a useful product, namely carboxylic acids. To potentially enhance acid yields, the effect of pretreatment using 0.3 g lime/g dry biomass and water at 100 °C for 10–240 min was studied. The pretreated sludges were anaerobically fermented to mixed-acids using a mixed culture of microorganisms; methanogens were suppressed using iodoform. Batch fermentations were performed at 55 °C using ammonium bicarbonate buffer. The first batch experiments compared treated and untreated sludge as the only substrate. The second batch experiments used a mixture of sludge plus lime-treated bagasse (20:80 by weight). Analysis of liquor shows that the pretreatment were effective in solubilizing constituent compounds of sewage sludge. Nitrogen content and carboxylic acids increased with increasing pretreatment time. However, the soluble sugars peaked at 60 min, and then decreased with longer pretreatment time, showing that the solubilised sugars were undergoing intermolecular reactions, such as Maillard reactions. Fermentation experiments were a good indicator of the biodegradability of the pretreated sludges. Results clearly showed that lime-treating sludge, using even the minimum pretreatment time (10 min), negatively impacted acid production. The likely causes of this observation are attributed to the production of recalcitrant complexes and toxic compounds. Batch fermentation of untreated sludge yielded 0.34 g total acids/g VS fed, whereas sludge with 240-min lime pretreatment yielded only 0.20 g total acids/g VS fed. Co-fermentation of untreated sludge with pretreated bagasse gave a yield of 0.23 g total acids/g VS fed.  相似文献   

17.
Uncontrolled deposition of waste from animal farms is a common practice in south-western Nigeria, and the presence of heavy metals in soil constitutes environmental and health hazards by polluting the soil, ground water, adjoining streams and rivers. The study investigated the profile distribution of Mn, Pb, Cd, Zn, Fe, Cu, Ni and Cr in some tropical Alfisols in south-western Nigeria after nine years disposal of animal wastes. The amount of these metals in the soil horizons was high enough to cause health and phytotoxic risks. All the metals except Zn and Cr increased down the profile, while Mn, Pb, Cd, Fe, Cu and Ni accumulated at 80–120 cm depth. The increment of these metals at this depth over the top soil were 26%, 143%, 72%, 47%, 328% for Mn, Pb, Cd, Cu and Ni, respectively. It thus, shows their mobility and the possibility of polluting ground water. The Mn content at the poultry and cattle waste sites increased by 127% and 25%, respectively over the control, while that of cattle and swine dump site for Cd content were 9.82 and 15.63 mg kg?1, respectively. Lead content also increased by 8.52 and 5.25 mg kg?1, respectively.There was the accumulation of Zn and Cu at the swine dump site while the cattle dump site had the highest amounts of nickel and chromium. The least amount of Fe was recorded at the swine waste dump site. The reduction in organic matter with depths together with the reduced pH might have favored the mobility of the metals. The ranking of pollution among the sites was poultry > swine > cattle > sheep and could be due to the type of ration fed, the vaccination programmes, sanitation programmes and other management practices.  相似文献   

18.
The landfill model LDAT simulates the transport and bio-chemical behaviour of the solid, liquid and gas phases of waste contained in a landfill. LDAT was applied to the LMC1 and LMC2 landfill modelling challenges held in 2009 and 2011. These were blind modelling challenges with the model acting in a predictive mode based on limited early time sections of full datasets. The LMC1 challenge dataset was from a 0.34 m deep 0.48 m diameter laboratory test cell, and the LMC2 dataset was from a 55 m × 80 m 8 m deep landfill test cell which formed part of the Dutch sustainable landfill research programme at Landgraaf in the Netherlands. The paper describes developments in LDAT arising directly from the experience of responding to the two challenges, and discusses the model input and output data obtained from a calibration using the full datasets.The developments include the modularisation of the model into a set of linked sub-models, the strategy for converting conventional waste characteristics into model input parameters, the identification of flexible degradation pathways to control the CO2:CH4 ratio, and the application of a chemical equilibrium model that includes a stage in which the solid waste components dissolve into the leachate.  相似文献   

19.
Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.  相似文献   

20.
The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily stored combustible waste were sampled from four Danish landfills. The waste was characterized in terms of physical characteristics (TS, VS, TC and TOC) and the BMP was analyzed in batch tests. The experiment was set up in triplicate, including blank and control tests. Waste samples were incubated at 55 °C for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon content (DOCC) was in the range of 0.44–0.70% of total weight (wet waste). Numeric values of both parameters were much lower than values of traditional municipal solid waste (MSW), as well as default numeric values in current FOD models. The sludge waste and temporarily stored combustible waste showed BMP values of 51.8–69.6 and 106.6–117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84–5.12% and 7.96–8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste for the first time, which is important and valuable for using current FOD LFG generation models to estimate realistic CH4 emissions from modern landfills receiving low-organic waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号