首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Optimal utilization of waste-to-energy in an LCA perspective   总被引:1,自引:0,他引:1  
Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall.  相似文献   

2.
Waste management contributes to renewable energy such as biodiesel production from processes of various types of biomass including vegetable oils, animal fats, and waste of edible oil. Successful waste management effort is influenced by people concern about benefit of waste management including for renewable energy from biomass. It involves their understanding initiated by literacy on biomass energy. To help increase literacy on waste recycle and biomass energy technology, we study readability of online information regarding biomass energy in Indonesian language (Bahasa Indonesia). Indonesia is considered as one of biomass-rich country with a little utilization for energy. The readability is studied by combining two approaches: measurement by readability standard and survey on readability confirming measurement by the standard. This study focuses on the confirmation survey readability standard measured on biomass online information in Indonesian language. In the survey, 19 online text materials were read by respondents and they were asked to give their impression whether the texts are easy or difficult to understand. From this study, what factors influence understandability of text information are shown. The results could be a guidance for preparing text information to raise people concern on waste recycle and renewable energy in general.  相似文献   

3.
环己酮生产中皂化废碱液的中和处理与综合利用   总被引:1,自引:0,他引:1  
介绍了利用废酸中和环己酮生产中排出的皂化废碱液以获得 Na2 SO4 和皂油的技术路线及工艺条件 ,简述了综合利用过程中存在的设备腐蚀和二次污染问题及解决途径。  相似文献   

4.
The anaerobic digestion of solid organic waste   总被引:5,自引:0,他引:5  
  相似文献   

5.
Due to the abundant supply and suitable physicochemical characteristics of livestock manure, it may be a useful biomass to produce biofuels, such as “bio-oil.” Hydrothermal liquefaction is a promising method for converting such wet biomasses into a liquid fuels and has attracted attention worldwide. In this review, the current state of research on the hydrothermal liquefaction of livestock manure biomasses is summarized. The effect of operating parameters on the yield of bio-oil is also reviewed. The fundamental characteristics of raw manure biomasses and converted oils are outlined and discussed in the paper. To reduce the use of fossil fuel and nuclear energy, the South Korean government has pledged to increase renewable energy. Based on findings from a literature review, it can be concluded that there is a chance for Korea to advance bio-oil production from the abundant and tremendous energy potential of swine manure by a hydrothermal liquefaction process.  相似文献   

6.
Even when policies of waste prevention, re-use and recycling are prioritised a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO2 reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency.  相似文献   

7.
Crop residues as soil amendments and feedstock for bioethanol production   总被引:3,自引:0,他引:3  
Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).  相似文献   

8.
Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment – especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a “best-practice-scenario” for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.  相似文献   

9.
Fossil energy and chemical sources are depleting. There is a critical need to change the current industry and human civilization to a sustainable manner, assuring that our way of life actual continues on the path of improvement after the depletion of fossil energy sources. The utilization of agricultural residues as raw materials in a biorefinery is a promising alternative to fossil resources for production of energy carriers and chemicals, thus mitigating climate change and enhancing energy security. Biorefinery is a concept of converting lignocellulosic biomass or grains (such as corn) to chemicals, materials and energy on which human civilization runs, replacing the need for petroleum, coal, natural gas, and other nonrenewable energy and chemical sources. Lignocellulosic biomass is renewable, that is plant synthesizes chemicals (by drawing energy from the sun and carbon dioxide) and water from the environment, while releasing oxygen. Combustion of biomass releases energy, carbon dioxide and water. Therefore, biorefinery plays a key role in satisfying human needs for energy and chemicals by using the biomass production and consumption cycle. This paper focuses on a biorefinery concept and in particular on the bioethanol production from wood residues. In order to evaluate the environmental reliability of the system under study, the biorefinery plant (producing bioethanol and electricity from wood residues) was compared, by using the LCA methodology, to both conventional refinery system (producing light fuel oil and electricity from petroleum) and biorefinery plant based on corn feedstock producing the same goods. Interesting considerations about LUC emissions effect on biorefinery sustainability are also reported. The obtained results show that by assigning reasonable values to the three damage categories used in the eco-indicator 99 methodology the biorefinery system is preferable, from an environmental point of view, to the conventional refinery system analysed. This finding confirms the high potentials of this innovative plant technology.  相似文献   

10.
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption.  相似文献   

11.
Biomass is recognized as an important solution to energy and the environmental problems related to fossil fuel usage. The rational utilization of biomass waste is important not only for the prevention of environmental issues, but also for the effective utilization of natural resources. Pyrolysis and hyrolysis in subcritical water are promising processes for biomass waste conversion. This paper deals with hydrolysis and pyrolysis of peanut shells. Hydrolysis and pyrolysis kinetics of peanut shell wastes were investigated for the in-depth exploration of process mechanisms and for the control of the reactions. Hydrolysis kinetics was conducted in a temperature range of 180–240 °C. A simplified kinetic model to describe the hydrolysis of peanut shells was proposed. Hydrolysis activation energy as well as the pre-exponential factor was determined according to the model. The target products of peanut shell hydrolysis, reducing sugars, can reach up to 40.5 % (maximum yield) at 220 °C and 180 s. Pyrolysis characteristics were investigated. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent pyrolysis activation energy and pre-exponential factor were obtained by the Coats–Redfern method.  相似文献   

12.
介绍了国电吉林热电厂对热力式除氧火力发电机组的高压除氧器乏汽进行全部回收,创造了可观的经济、环境和社会效益,在当前国际国内能源供应形势紧张、大力提倡节能环保的情况下,具有积极意义.  相似文献   

13.
The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.  相似文献   

14.
Within the context of European Union (EU) energy policy and sustainibility in waste management, recent EU regulations demand energy efficient and environmentally sound disposal methods of Municipal Solid Waste (MSW). Currently, landfill with its many drawbacks is the preferred option in the EU and many other industrialised countries. Within the waste management hierarchy thermal disposal especially incineration is a viable and proven alternative. But, the dominating method, mass-burn grate incineration has drawbacks as well particularly hazardous emissions and harmful process residues. In recent years, pyrolysis and gasification technologies have emerged to address these issues and improve the energy output. To keep the many players in the field comprehensively informed and up-to-date, novel and innovative technology approaches emphasising European developments are reviewed.  相似文献   

15.
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today’s rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term ‘zero emission systems’. The concept of zero emissions can be applied successfully with today’s technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input–output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.  相似文献   

16.
During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.  相似文献   

17.
Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste – in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currently subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO2-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.  相似文献   

18.
Organic waste and municipal solid waste usually contain considerable amounts of different nitrogen compounds, which may inhibit anaerobic degradation processes and cause problems in the downstream and peripheral devices. This refers particularly to the different process stages of anaerobic digestion, to wastewater treatment, and to exhaust air treatment. Neither the knowledge about nitrogen problems nor the technologies for elimination of nitrogen compounds from the wastewater or the exhaust air of anaerobic digestion can be regarded as state-of-the-art. Most of the technologies in question have already been applied in other areas, but are barely tested for application in anaerobic digestion plants. The few performance data and experiences at hand were mainly derived from pilot and demonstration facilities. In this paper, the problem of nitrogen will be discussed in detail according to the separate problem fields based on the authors' experience, as well as on the basis of a review of the relevant literature. Furthermore, possible solutions will be proposed and the need for further research and development will be formulated.  相似文献   

19.
In assessments of the environmental impacts of waste management, life-cycle assessment (LCA) helps expanding the perspective beyond the waste management system. This is important, since the indirect environmental impacts caused by surrounding systems, such as energy and material production, often override the direct impacts of the waste management system itself. However, the applicability of LCA for waste management planning and policy-making is restricted by certain limitations, some of which are characteristics inherent to LCA methodology as such, and some of which are relevant specifically in the context of waste management. Several of them are relevant also for other types of systems analysis. We have identified and discussed such characteristics with regard to how they may restrict the applicability of LCA in the context of waste management. Efforts to improve LCA with regard to these aspects are also described. We also identify what other tools are available for investigating issues that cannot be adequately dealt with by traditional LCA models, and discuss whether LCA methodology should be expanded rather than complemented by other tools to increase its scope and applicability.  相似文献   

20.
Tracking the evolution of research in waste recycling science (WRS) can be valuable for environmental agencies, as well as for recycling businesses. Maps of science are visual, easily readable representations of the cognitive structure of a branch of science, a particular area of research or the global spectrum of scientific production. They are generally built upon evidence collected from reliable sources of information, such as patent and scientific publication databases. This study uses the methodology developed by Rafols et al. (2010) to make a "double overlay map" of WRS upon a basemap reflecting the cognitive structure of all journal-published science, for the years 2005 and 2010. The analysis has taken into account the cognitive areas where WRS articles are published and the areas from where it takes its intellectual nourishing, paying special attention to the growing trends of the key areas. Interpretation of results lead to the conclusion that extraction of energy from waste will probably be an important research topic in the future, along with developments in general chemistry and chemical engineering oriented to the recovery of valuable materials from waste. Agricultural and material sciences, together with the combined economics, politics and geography field, are areas with which WRS shows a relevant and ever increasing cognitive relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号