首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on growth feasibility in an era of increasing scarcity of fossil fuels. A stylised dynamic model illustrates the implications of investing in smooth technological progress in the field of renewable energy. Positive rates of GDP growth sustained by fossil fuels entail, on the one hand, more income available for R&D in renewable energy sources, and on the other, an acceleration of the exhaustible resource depletion time. Our model explores such a trade-off and highlights the danger of high growth rates. Policies should target low growth rates, stimulate investment in alternative energy sources and discourage consumption growth.  相似文献   

2.
Energy demand is growing rapidly across the world, and international funding agencies like the World Bank have responded by emphasizing energy in their project portfolios. Some of these projects promote the use of fossil fuels, while others support cleaner forms of energy. For climate change mitigation, it is important to understand how international funders decide on the choice between fossil fuels and cleaner sources of energy. Examining the energy funding portfolios of the nine most important international funders for the years 2008-2011, we show that funding for fossil fuels has been concentrated in highly urbanized autocracies. Due to economies of scale, fossil fuels are suitable for generating heat and electricity for densely populated urban areas. Autocratic rulers are subject to urban bias in their policy formulation because the support of concentrated urban constituencies is key to an autocrat’s political survival, and in democracies environmental constituencies can effectively oppose fossil fuel projects.  相似文献   

3.
Both Europe and China have announced targets for greenhouse gas emissions reduction and renewable energy development. To achieve their emissions targets, Europe has introduced emissions trading scheme (ETS) since 2005 and China has planned to establish a national ETS in 2015. We assess the impact of a joint Europe-China ETS when both climate and energy policy instruments are simulated in a multiregional general equilibrium model. Our results show that a joint ETS markedly increases total carbon emissions from fossil fuels even though global mitigation costs are reduced. Moreover, a joint ETS helps China achieve its renewable energy target, but for Europe, it works opposite. While the renewable energy target does not help Europe achieve additional abatement, the renewable energy target in China reduces mitigation costs and emissions, and increases renewable energy consumption and sales of carbon allowances. Financial transfer through a joint ETS remains marginal compared to China’s demand for renewable energy subsidies. We conclude that as long as an absolute emissions cap is missing in China, a joint ETS is not attractive for mitigation and China’s renewable energy target can reduce emissions.  相似文献   

4.
A variety of energy sources will compete to provide the energy services that humans will require over the next 100 years. The balance of these sources will depend upon the availability of fossil fuels and the development of new technologies including renewable energy technologies, and will be one of the keys in projecting greenhouse gas emissions. There is uncertainty about each of the energy sources. With oil, for example, there are two alternate views of future reserves, one that reserves are geologically limited and that supplies will decline within a decade or two, the other that there are enormous quantities of hydrocarbon in the earth’s crust and that reserves are a function of developing technology and price. With solar voltaics, as a second example, there is optimism that the technology will become increasingly competitive, but there is uncertainty about the rate at which costs can come down and about ultimate cost levels. This paper reviews the reserves of fossil fuels and the prospects for nuclear power and the renewables. It also reviews the main energy conversion technologies that are available now or are expected to become increasingly available through time. However, it should be noted that, over a time horizon of 100 years, there may be quite radical changes in both production and conversion technologies that cannot be predicted and it is quite possible for some as yet unheard of technology to be developed and to transform the markets. The paper has been written to aid the development of new scenarios for the emission of greenhouse gases for the Intergovernmental Panel on Climate Change.  相似文献   

5.
While the notion of differentiated responsibility has always included an element of technological transfer, the growing disparity between the deployment of non-scalable renewable energy sources in the rich countries and the massive expansion of fossil infrastructure elsewhere has brought new urgency to issues of climate leadership. Breakthrough innovation into technologies capable of providing an abundance of clean energy now appears necessary not only to broaden energy access but also to ensure that fossil fuels are quickly displaced globally (including in those countries that have failed to take climate change seriously). Moreover, it is reasonable to expect that a climatechanged world in itself will demand abundant energy to facilitate everything from carbon dioxide removal to mass desalination for agriculture and other adaptation measures. Considering the moral and political impossibility of treating sustained poverty as the “solution” to the climate crisis, this paper suggests that rich countries have a moral obligation to invest in breakthrough innovation into technologies that are compatible with a future global economic convergence around OECD-levels.  相似文献   

6.
Energy issues are important and consumption is slated to increase across the globe in the future. The energy-environment nexus is very important as strategies to meet future energy demand are developed. To ensure sustainable growth and development, it is essential that energy production is environmentally benign. There are two temporal issues—one that is immediate, and needs to address the environmental compliance of energy generation from fossil fuel sources; and second that is the need to develop newer alternate and more sustainable approaches in the future. Aerosol science and technology is an enabling discipline that addresses the energy issue over both these time scales. The paper is a review of aspects of aerosol science and engineering that helps address carbon neutrality of fossil fuels. Advanced materials to meet these challenges are discussed. Future approaches to effective harvesting of sunlight that are enabled by aerosol studies are discussed.  相似文献   

7.
The resource basis of industrial energy production is still, to a large extent, in non-renewable fossil fuels, the use of which creates emissions that the ecosystem has difficulty in tolerating. The goal of industrial ecology is to substitute the non-renewable stocks with renewable flows. In this paper, a regional industrial ecosystem that relies on a power plant as its key organisation, as an anchor tenant, is considered in the context of energy production and consumption. The co-production method of heat and electricity (CHP, co-production of heat and power) is implemented in the local power plant. This method uses the waste energy from electricity production for district heat and industrial heat/steam. The fuel basis in a CHP plant can include heterogeneous waste fuels. The method has been applied, to a large extent, in only three countries in the world; Denmark, The Netherlands and Finland. Examples of CHP-based industrial ecosystems from Finland are considered. CHP is reflected upon from the viewpoint of industrial ecosystem principles.  相似文献   

8.
中国是煤炭消耗的第一大国,同时又是有机废物生物质贮存量第一大国。本文叙述了全球生物质能的历史定位,生物质能的主要评价指标,生物质的能源转换技术和生物质能可供给量模型分析与预测实例,以及我国有机废物类生物质能源化利用途径,并探讨了有机废物的能源利用与废物污染防治相结合的生物质能源发展道路。  相似文献   

9.
Combined heat and power (CHP) as well as intermittent renewable energy sources (RES) are key elements in future cleaner electricity production systems. This article presents solutions which will integrate fluctuating renewable electricity supplies, such as wind power, into electricity systems using small and medium-sized combined heat and power plants (CHP). Such solutions call for a new organisational setup of partnerships and software tools. The software tools will allow the new partnerships to offer services which are currently only offered by big power plants to electricity markets. The article presents recent results of the development and implementation of such partnerships and focuses on the methodologies and computer tools necessary in order to allow the partnerships to optimise their behaviour on the market. The use of such tools and methodologies makes groups of small CHP plants able to replace large power stations and, at the same time, allows for the integration of a higher share of RES in the electricity supply, resulting in a decrease in both fossil fuels and CO2 emissions.  相似文献   

10.
The UN Framework Convention of Climate Change 15th Conference of the Parties Copenhagen Accord has been followed up by national pledges of greenhouse gas emissions reductions in the year 2020 without specifying measures to enforce actions. As a consequence, the capacity of parties to fulfil their obligations is of basic interest. This article outlines the effects of full compliance with pledges on greenhouse gas emissions, economic growth, and trade. The study is based on the global computable general equilibrium model global responses to anthropogenic changes in the environment (GRACE) distinguishing between fossil and non-fossil energy use. Global emissions from fossil fuels in 2020 turn out to be 15 % lower than in a business as usual scenario and 3 % below the global emissions from fossil fuels in 2005. China and India increase their emissions to 1 % and 5 % above business as usual levels in 2020. India and Russia increase their net export of steel corresponding to around 30 and 45 % of their production levels in 2020. In spite of some leakage of energy intensive production also to China, we find that structural change remains the dominant factor behind the rapid reduction of CO2 emission intensity in China towards 2020.  相似文献   

11.
The rate of carbon accumulation in the atmosphere can be reduced by decreasing emissions from the burning of fossil fuels and by increasing the net uptake (or reducing the net loss) of carbon in terrestrial (and aquatic) ecosystems. The Kyoto Protocol addresses both the release and uptake of carbon. Canada is developing a National Forest Carbon Monitoring, Accounting and Reporting System in support of its international obligations to report greenhouse gas sources and sinks. This system employs forest-inventory data, growth and yield information, and statistics on natural disturbances, management actions and land-use change to estimate forest carbon stocks, changes in carbon stocks, and emissions of non-CO2 greenhouse gases. A key component of the system is the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS). The model is undergoing extensive revisions to enable analyses at four spatial scales (national, provincial, forest management unit and stand) and in annual time steps. The model and the supporting databases can be used to assess carbon-stock changes between 1990 and the present, and to predict future carbon-stock changes based on scenarios of future disturbance rates and management actions.  相似文献   

12.
Global Biomass Energy Potential   总被引:1,自引:1,他引:1  
The intensive use of renewable energy is one of the options to stabilize CO2atmospheric concentration at levels of 350 to 550ppm. A recent evaluation of the global potential of primary renewable energy carried out by Intergovernmental Panel on Climate Change (IPCC) sets a value of at least 2800EJ/yr, which is more than the most energy-intensive SRES scenario forecast for the world energy requirement up to the year 2100. Nevertheless, what is really important to quantify is the amount of final energy since the use of renewable sources may involve conversion efficiencies, from primary to final energy, different from the ones of conventional energy sources. In reality, IPCC does not provide a complete account of the final energy from renewables, but the text claims that using several available options to mitigate climate change, and renewables is only one of them, it is possible to stabilize atmospheric carbon dioxide (CO2) concentration at a low level. In this paper, we evaluate in detail biomass primary and final energy using sugarcane crop as a proxy, since it is one of the highest energy density forms of biomass, and through afforestation/reforestation using a model presented in IPCC Second Assessment Report (SAR). The conclusion is that the primary-energy potential for biomass has been under-evaluated by many authors and by IPCC, and this under-evaluation is even larger for final energy since sugarcane allows co-production of electricity and liquid fuel. Regarding forests we reproduce IPCC results for primary energy and calculate final energy. Sugarcane is a tropical crop and cannot be grown in all the land area forecasted for biomass energy plantation in the IPCC/TAR evaluation (i.e. 1280Mha). Nevertheless, there are large expanses of unexploited land, mainly in Latin America and Africa that are subject to warm weather and convenient rainfall. With the use of 143Mha of these lands it is possible to produce 164EJ/yr (1147GJ/hayr or 3.6W/m2on average) of primary energy and 90EJ/yr of final energy in the form of liquid fuel (alcohol) and electricity, using agricultural productivities near the best ones already achievable and biomass gasification technology. More remarkable is that these results can be obtained with the operation of 4,000 production units with unitary capacity similar to the largest currently in operation. These units should be spread over the tropical land area yielding a plantation density similar to the one presently observed in the state of São Paulo, Brazil, where alcohol and electricity have been commercialized in a cost-effective way for several years. Such an amount of final energy would be sufficiently large to fulfill all the expected global increase in oil demand, as well as in electricity consumption by 2030, assuming the energy demand of such sources continues to grow at the same pace observed over the last two decades. When sugarcane crops are combined with afforestation/reforestation it is possible to show that carbon emissions decline for some IPCC SRES scenarios by 2030, 2040 and 2050. Such energy alternatives significantly reduce CO2emissions by displacing fossil fuels and promote sustainable development through the creation of millions of direct and indirect jobs. Also, it opens an opportunity for negative CO2emissions when coupled with carbon dioxide capture and storage.  相似文献   

13.
Over the past decade, the relationship between agricultural and energy markets has strengthened. Traditional energy sources have been increasingly replaced by energy from biomass, and this trend is expected to continue into the future. Consequently, an assessment of the efficiency of bioenergy policies requires a comprehensive analysis of both agricultural and energy markets. The objective of this paper is to analyze the impacts of two detailed European Union (EU) greenhouse gas (GHG) emission mitigation policies on the utilization of biomass for energy production and the implications for agricultural prices and trade. The consequences of a policy-induced shift from consumption of fossil to renewable energy are assessed under full consideration of interrelations between the energy and agricultural sectors. To this end, we combine an energy system model and an agricultural sector model by establishing a consistent interface between them. Depending on the ambition of the GHG emission reduction scenarios, the results indicate significant price increases. Furthermore, the increase in European demand for energy crops is to a substantial degree covered by additional imports. These results highlight that GHG emission mitigation policies enacted in a large economy like the EU cannot be considered without accounting for indirect effects in the rest of the world. They put the efficiency and also the effectiveness of such policies in general into question.  相似文献   

14.
Algal biofuel production and mitigation potential in India   总被引:1,自引:1,他引:0  
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5?C12 g/m2/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.  相似文献   

15.
Given the importance of renewable energy sources for reducing the threat of global climatic change without compromising economic development, this paper explores regulatory alternatives that may facilitate the introduction of renewable energy in the Colombian electricity market. The analysis is based on a simulation model of the electricity market that represents the behaviour of the agents involved, and their decision to invest according to proposed incentives. The possible expansion of renewable energy depending on different incentives is examined. This research is carried out in the Latin-American context, and accordingly we present the exploitation potential of renewable sources for electricity generation in the region. This paper shows how restructuring electricity markets, such as the Colombian and others in Latin America, may be an efficient means to promote the use of renewable energy.  相似文献   

16.
This paper analyses the performance of ‘market-based’ and ‘feed-in tariff’ systems of renewable energy procurement, and comments on the impact of different procurement systems on investment in renewable energy. The ‘market-based’ British Renewables Obligation (RO) is not more cost-effective compared to the German feed in tariff. Although the nominal rates of payment per kWh of renewable energy are higher in Germany, this is more than offset by lower wind speeds in Germany producing a lower return on investment compared to the UK. A harmonised, EU-wide market-based system, would not improve cost-effectiveness, and may serve to reduce, rather than increase, local investment in renewable energy. On the other hand, nationally based green electricity certificate systems like the RO are not intrinsically biased against locally owned or co-operative ventures. Systems are needed which encourage a diversity of investment in renewable energy from local as well as institutional sources.  相似文献   

17.
Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon storage. Significant carbon benefit can be obtained in the long run from using lands for growing short rotation energy crops and substituting fossil fuels by the biomass thus produced, as opposed to sequestering carbon in the biomass of the trees. When growth rates are high and harvest is used in a sustainable manner (i.e., replanting after every harvest), the opportunities for net carbon reductions appear to be fossil fuel substitution, rather than storage in ecosystem biomass. Our results suggest that at year 100 a total of 216 Mg C ha−1 is sequestered for afforestation/reforestation using long rotation sal (Shorea robusta Gaertn.f) species, as opposed to offset of 412 Mg C ha−1 for carbon storage and fossil fuel substitution for short rotation poplar (Populus Deltoides Marsh) plantations. The bioenergy option results in a continuous stream of about 3 Mg C ha−1 yr−1 of carbon benefits per year on forest land and 4 Mg C ha−1 yr−1 on non-forest land. Earlier studies have shown that in India waste land availability for establishing energy plantations is in the range of 9.6 to 36.5 Mha. Thus, using the 758 Tg biomass per year generated from 9.6 Mha waste land gives a mitigation potential in the range of 227 to 303 Tg C per year for carbon storage and fossil fuel substitution from poplar plantation for substituting coal based power generation. Depending upon the land availability for plantation, the potential for energy generation is in the range of 11,370 PJ, possibly amounting to a bioenergy supply of 43% of the total projected energy consumption in 2015. Further studies are needed to estimate the mitigation potential of other species with different productivities for overall estimation of the economic feasibility and social acceptability in a tropical country like India.  相似文献   

18.
Nigeria is endowed with abundant energy resources, both conventional and renewable, whichprovide her with immense capacity to develop an effective national energy plan. However, introduction of renewable energyresources into the nation's energy mix have implications on itsenergy budget. The national energy supply system has been projected intothe future using MARKAL, a large scale linear optimization model.However, this model may not be absolutely representative of the highlynon-linear future of renewable energy. Results of the model reveal that under onlya least cost constraint, only large hydro power technology is the prominentcommercial renewable energy technology in the electricity supply mix of thecountry. Despite the immense solar energy potentials available, solar electricity generation is attractive only under severeCO2 emissions mitigation of the nation's energy supply system. Similarly, the penetration of small-scale hydro power technology in theelectricity supply mix is favoured only under CO2 emissionsconstraints. Due to economy of scale, large hydropower technology takes the lion share of all the commercial renewableenergy resources share for electricity generation under any CO2emissions constraint. These analyses reveal that some barriers exist to thedevelopment and penetration of renewable energy resources electricity production in Nigeria's energy supplysystem. Barriers and possible strategies to overcome them arediscussed. Intensive efforts and realistic approachtowards energy supply system in the country will have to be adopted inorder to adequately exploit renewable energy resources and technologiesfor economic growth and development.  相似文献   

19.
中国化石能源消费碳排放与经济增长关系研究   总被引:7,自引:1,他引:6  
化石能源过度消费导致的气候变化问题引发了全世界对经济发展模式的关注,论文运用计量经济学方法研究了中国化石能源消费碳排放与经济增长的关系,测算了中国1953-2010年化石能源消费引起的碳排放总量,建立了碳排放总量和国内生产总值的时序计量经济模型,通过协整检验、误差修正模型、基于VAR模型的脉冲响应函数、因果关系检验,分析了二者之间的长短期关系,结果表明:1953-2010年,我国的化石能源消费碳排放总量和国内生产总值之间存在长期均衡的协整关系和短期动态调整机制,通过短期调节,可以自动实现二者之间的长期均衡。当期GDP对碳排放总量的当期波动有显著性影响,每增加1%的GDP便会增加0.719%的碳排放量,上期误差对碳排放总量的当期波动调整幅度较大,单位调整比例为-0.102。利用脉冲响应函数波形图对碳排放量与经济增长之间的影响及响应进行了20期的详细刻画,揭示了二者之间复杂的短期动态关系。1953-2010年,存在从碳排放总量到GDP的单向Granger因果关系,碳排放是经济增长的Granger原因,而经济增长不是碳排放的Granger原因,说明从过去58 a的整体状况来看,高碳排放推动了经济增长,而经济增长并未导致明显的碳排放增加。研究结果将对中国制定节能减排和碳减排政策提供依据和支撑。  相似文献   

20.
This paper presents the results of an environmental impact assessment of biodiesel production from soybean in Brazil. In order to achieve this objective, environmental impact indicators provided by Emergy Accounting (EA), Embodied Energy Analysis (EEA) and Material Flow Accounting (MFA) were used. The results showed that for one liter of biodiesel 8.8 kg of topsoil are lost in erosion, besides the cost of 0.2 kg of fertilizers, about 5.2 m2 of crop area, 7.33 kg of abiotic materials, 9.0 tons of water and 0.66 kg of air and about 0.86 kg of CO2 were released. About 0.27 kg of crude oil equivalent is required as inputs to produce one liter of biodiesel, which means an energy return of 2.48 J of biodiesel per Joule of fossil fuel invested. The transformity of biodiesel (3.90E + 05 seJ J?1) is higher than those calculated for fossil fuels as other biofuels, indicating a higher demand for direct and indirect environmental support. Similarly, the biodiesel emergy yield ratio (1.62) indicates that a very low net emergy is delivered to consumers, compared to alternatives. Obtained results show that when crop production and industrial conversion to fuel are supported by fossil fuels in the form of chemicals, goods, and process energy, the fraction of fuel that can actually be considered renewable is very low (around 31%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号