首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Six 3D models of the digestive system during ontogeny were reconstructed from histological sections of Atlantic cod larvae. The 3D models clearly visualize the following features: folding of the gut rotation; subdivision of digestive tract into foregut, midgut, and hindgut by sphincters; development of stomach and pyloric caeca from 39 dph; location of entrances of bile and pancreatic ducts in the medial plane of the anterior midgut; ontogeny of pancreas from a compact organ to an elongated and branched (but not diffuse) organ along the posterior midgut; one dominant islet of Langerhans until 39 dph and several smaller satellite islets also visible from 53 dph; the relatively large volume of the anterior midgut that probably increases residence time of ingested food mixing with secretions from pancreas and bile. Calculated volumes of each digestive organ demonstrate allometric changes during ontogeny. Interactive 3D models are available as QuickTime format downloadable files.  相似文献   

2.
By applying a microinjection technique previously used in cell biology, a pH-sensitive dye, 2,7-bis(2-carboxyethyl)-5,6-carboxyfluorescein) (BCECF), was injected into the gut of the copepod Calanus helgolandicus to determine pH under a range of feeding conditions. The median gut pH of the fore- and hindguts of starved individuals was 6.86 and 7.19, respectively. This was a consistently lower pH than that observed in copepods feeding on either the diatom Thalassiosira weissflogii, the dinoflagellate Prorocentrum micans, or the coccolithophorid Emiliania huxleyi (Strain 92D), all of which had a median gut pH>7.0. In all treatments, the median pH of the foregut was more acidic than the median of the hindgut, implying that the foregut is the site of acid secretion. The results, which demonstrate pH values down to 6.11, are discussed in terms of coccolith dissolution, pigment degradation and digestive enzyme activity.  相似文献   

3.
The alimentary tract of the nauplius larva of Balanus spp. consists of cuticle-lined foregut and hindgut, with intervening endodermal midgut constricted into anterior and posterior regions. The anterior midgut cells in the region of the constriction (constriction cells) secrete proteins (probably digestive enzymes). The remaining anterior midgut cells, often containing lipid droplets, form the absorptive region of the tract. Glycoprotein globules and lipid droplets within anterior midgut cells are the remants of the yolk in a pre-hatched larva, this yolk additionally supporting the larva through the non-feeding first nauplius stage. Nauplius Stages II to VI are actively feeding planktonic stages which increase in size and build up lipid reserves. These accumulated reserves support the non-feeding cyprid, first through its planktonic life and then through settlement and subsequent metamorphosis to the juvenile barnacle. Juvenile barnacles start to feed between 2 and 5 days after metamorphosis.  相似文献   

4.
The present paper studied the influence of different food regimes on the free amino acid (FAA) pool, the rate of protein turnover, the flux of amino acids, and their relation to growth of larval turbot (Scophthalmus maximus L.) from first feeding until metamorphosis. The amino acid profile of protein was stable during the larval period although some small, but significant, differences were found. Turbot larvae had proteins which were rich in leucine and aspartate, and poor in glutamate, suggesting a high leucine requirement. The profile of the FAA pool was highly variable and quite different from the amino acid profile in protein. The proportion of essential FAA decreased with development. High contents of free tyrosine and phenylalanine were found on Day 3, while free taurine was present at high levels throughout the experimental period. Larval growth rates were positively correlated with taurine levels, suggesting a dietary dependency for taurine and/or sulphur amino acids. Reduced growth rates in Artemia-fed larvae were associated with lower levels of free methionine, indicating that this diet is deficient in methionine for turbot larvae. Leucine might also be limiting turbot growth as the different diet organisms had lower levels of this amino acid in the free pool than was found in the larval protein. A previously presented model was used to describe the flux of amino acids in growing turbot larvae. The FAA pool was found to be small and variable. It was estimated that the daily dietary amino acid intake might be up to ten times the larval FAA pool. In addition, protein synthesis and protein degradation might daily remove and return, respectively, the equivalent of up to 20 and 10 times the size of the FAA pool. In an early phase (Day 11) high growth rates were associated with a relatively low protein turnover, while at a later stage (Day 17), a much higher turnover was observed. Received: 19 March 1997 / Accepted: 14 April 1997  相似文献   

5.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

6.
The functional status of organ systems involved into the processing of exogenous food is critical for the survival and growth of fish early life stages. The present study on laboratory-reared larval turbot, Scophthalmus maximus, provides an overview on the ontogeny of structure and functions involved in digestion, absorption and metabolism of nutrients. At start of exogenous feeding the intestine of larval turbot is anatomically differentiated, with enterocytes displaying an adult-type ultrastructure and being able to process lipids. At the microvillous border of the enterocytes, enzymes of contact digestion such as aminopeptidase are found. The ultrastructure of the exocrine pancreatic cells is fully differentiated from hatching onwards. Likewise, substantial activities of trypsin-type proteases are present. A stomach anlage exists in first-feeding larvae; however, the stomach becomes functional (appearance of gastric glands and pepsin secretion) only during metamorphosis. Liver parenchymal cells already display a functional ultrastructure during the endotrophic phase; with onset of exogenous feeding they develop pronounced diet-related changes of their energy stores. Larval respiration is not executed by the gills since respiratory surface of these structures develops only towards metamorphosis. The energy generation of larval muscle tissue depends on aerobic metabolism, whereas glycolytic activities start to increase at metamorphosis. In conclusion, two important patterns can be recognized in the development of turbot larvae: (1) The structure/function is differentiated at hatching or at the onset of exogenous feeding (afterwards it experiences mainly quantitative but not qualitative growth, i.e., intestine, exocrine pancreas, liver); or (2) the structure/function is absent in larvae and develops only during metamorphosis (i.e., gills, glycolytic muscle metabolism, stomach).  相似文献   

7.
This paper provides basic early life-history information on milkfish (Chanos chanos), seabass (Lates calcarifer) and rabbitfish (Siganus guttatus) which may explain in part the observed differences in their survival performance in the hatchery. Egg size, larval size, amount of yolk and oil reserves and mouth size are all greater in milkfish than in seabass, and greater in the latter than in rabbitfish. During the first 24 h after hatching, rabbitfish larvae grow much faster than milkfish and seabass larvae at similar ambient temperatures (range 26°–30°C, mean about 28°C). The eyes become fully pigmented and the mouths open earlier in seabass and rabbitfish (32–36 h from hatching) than in milkfish (54 h). Seabass larvae learn to feed the earliest. Yolk is completely resorbed at 120 h from hatching in milkfish, and yolk plus oil at 120 h in seabass and 72 h in rabbitfish at 26° to 30°C. Milkfish and seabass larvae have more time than rabbitfish to initiate external feeding before the endogenous reserves are completely resorbed. Delayed feeding experiments showed that 50% of unfed milkfish larvae die at 78 h and all die at 150 h from hatching. Milkfish larvae fed within 54 to 78 h after hatching had improved survival times: 50% mortality occurred at 96 to 120 h, and 10 to 13% survived beyond 150 h. Unfed seabass larvae all died at 144 h, while 6 to 13% of those fed within 32 to 56 h after hatching survived beyond 144 h and well into the subsequent weeks. Unfed rabbitfish larvae all died at 88 h, while 7 to 12% of those fed within 32 to 56 h after hatching survived beyond 88 h. A delay in initial feeding of more than 24 h after eye pigmentation and opening of the mouth may be fatal for all three species.Contribution No. 167 from the SEAFDEC Aquaculture Department  相似文献   

8.
The contents of free amino acids (FAA) and total protein, together with growth and gut-content, of turbot (Scophthalmus maximus L.) larvae reared at 14, 18 and 22 °C were studied from first-feeding to approximately 140 effective day-degrees post hatch (Deff ). Artemia franciscana nauplii and two species of rotifers were used as prey. Protein content accounted for about 42 and 26% of dry body mass in the A. franciscana nauplii and the rotifers, respectively. The FAA pool constituted 5.6 and 4.8% of the total amino acids in the same animals. The dry body mass of turbot larvae was exponentially related to Deff . Protein and FAA contents were linearly related to dry body mass, and were independent of rearing temperature between 14 and 18 °C. At the end of the experiment, however, turbot larvae at 22 °C had lower gut content values, retarded growth rates, and decreased FAA contents and concentrations. Thus, at this high temperature, turbot larvae seem unable to catch and ingest sufficient prey, or to sustain an amino acid assimilation rate from the intestine sufficient to meet metabolic demands. Received: 2 January 1997 / Accepted: 25 September 1998  相似文献   

9.
Larvae of Clyde spring-spawning Clupea harengus L. and hatchery-produced Scophthalmus maximus (L.) were reared from hatching through metamorphosis in 1980 and 1981 in laboratory tanks and in large enclosures under various light, temperature, and feeding regimes in order to study otolith ring deposition and growth under different conditions. Ring deposition and growth rates were significantly affected by rearing conditions in both species. The ring deposition rates observed under the conditions tested ranged from 0.34 to 0.92 rings d-1 in herring larvae, and from 0.07 to 1.0 rings d-1 in turbot larvae. Growth rates ranged from 0.11 to 0.42 mm d-1 in herring and from 0.05 to 0.27 mm d-1 in turbot. The number of otolith rings was dependent on the growth rate of the individual larva. At the population level, higher ring deposition rates were observed in faster growing populations. In herring larvae, the relationship between average growth rate and average ring deposition rate was logarthmic, reaching an asymptote at 1 ring d-1 for growth rates approaching 0.40 mm d-1. The relationship was linear for turbot larvae for the range of growth rates observed.  相似文献   

10.
A. Kellermann 《Marine Biology》1990,106(2):159-167
The feeding dynamics of larvae of the Antarctic fishNototheniops larseni were analyzed from data collected over three years in Bransfield Strait and adjacent waters (Antarctica). Seasonal feeding was examined from 1977/1978 (November–March). The diel feeding cycle was investigated during a 96 h station established in February 1976, while food selection was analyzed using larvae and zooplankton samples collected in February 1982. Hatching occurs in early spring, and larvae fed on eggs of calanoid copepods and on cyclopoid copepods. Copepod eggs were the principal food near the pack ice, and cyclopoids in open waters. Cyclopoids were the staple food in summer. Eggs of the Antarctic krillEuphausia superba were ingested selectively and formed major portions of the larval summer diet in neritic (Joinville Island) and oceanic (Elephant Island) spawning areas ofE. superba. In the fall, copepods predominated in the diets. Most abundant and most frequently ingested prey in summer and fall wereOncaea spp. Feeding commenced at dawn and continued at least until dusk. Krill eggs were taken chiefly during morning hours and egg incidence declined during the day, suggesting that eggs were ingested soon after spawning. Prey size at the onset of feeding was estimated as 0.130 to 0.330 mm. Size-selective feeding was evident in small larvae, while in larger larvae median prey length remained constant. High feeding incidence among yolk-sac larvae in spring, high overall feeding incidence in summer, and size-selective foraging of small larvae suggested favorable feeding conditions in the 1977/1978 season. Yolk-absorption times in Antarctic fish larvae vary on a scale of weeks and may be further retarded due to early feeding. Hence, year-to-year variability of yolk incidence inN. larseni indicated variable biotic environments of early feeding larvae rather than temporal shifts of hatching periods. As hatching periods are constant between years in contrast to the variable retreat of the pack ice and subsequent onset of the production cycle in space and time, maternal yolk reserves are probably utilized to compensate for such variations.  相似文献   

11.
This work analyzes bacterial diversity of sediments transiting through the gut of Holothuria scabra which is an important bioturbator in tropical shallow waters. This edible holothurian species has a social and economic importance for coastal populations in many developing countries. Bacterial biodiversity was analyzed by sequencing the 16S rRNA of bacterial cultures and clones. DAPI and FISH methods were used to determine and compare the number of bacteria found in the various gut compartments. A total of 116 phylotypes belonging to the γ-Proteobacteria (60.5 %), α-Proteobacteria (24.5 %), Bacteroidetes (6 %), Actinobacteria (2.75 %), Fusobacteria (1.75 %), Firmicutes (1.75 %), Cyanobacteria (1.75 %) and δ-Proteobacteria (1 %) were identified. The number of bacteria is significantly greater (1.5×) in the foregut than in the ambient sediments. The number of bacteria significantly decreases in the midgut and remains stable until defecation. Some γ-Proteobacteria, especially Vibrio, are less affected by digestion than other bacterial taxa. The season has an impact on the bacterial diversity found in the sediments transiting through the gut: in the dry season, γ-Proteobacteria are the most abundant taxon, while α-Proteobacteria dominate in the rainy season. Vibrio is the most frequent genus with some well-known opportunistic pathogens like V. harveyi, V. alginolyticus and V. proteolyticus. Findings show that sediment-associated microbial communities are significantly modified by H. scabra during their transit through the gut which supports the view that holothurians play a substantial role in the structuring of bacterial communities at the sediment–seawater interface.  相似文献   

12.
Cod (Gadus morhua L.) eggs may develop and hatch within temperatures of −1.5 to 12 °C, but little is known about the effects of very low temperatures on larval characteristics. Eggs of the Northeast Arctic cod (Gadus morhua) were incubated at 1, 5 or 8 °C from Day 1 after fertilisation until hatching, and transferred to 5 °C after hatching. Histological samples of the axial musculature were taken at hatching and 5 d after hatching, and the data on muscle cellularity from these samples were related to survival and hatching, size, developmental data and viability of the yolk sac larvae. All larvae hatched at the same developmental stage. Incubation of eggs at 1 °C produced shorter larvae with a larger yolk sac and more, small deep fibres at hatching than larvae from eggs incubated at 5 or 8 °C. The larval size difference was still present 5 d after hatching, a time at which the larvae from 1 °C-incubated eggs were less developed and less resistant to an acute viability stress test (65 ppt salinity). Although there were no differences between temperature groups in number and size of muscle fibres 5 d after hatching, the deep fibres of the 1 °C-group contained less myofibrils than the two other groups. The phenotype of the larvae at hatching was thus affected within these incubation temperatures. Although all groups were transferred to the same temperature after hatching, the lowest egg incubation temperature (1 °C) still had a negative effect 5 d after hatching, as these larvae were both smaller, less resistant to stress and had less functional muscles at the time of first feeding. Our conclusion is therefore that 1 °C is close to, or below, the lower thermal tolerance limit for normal functional development of Northeast Arctic cod. The results are discussed in relation to larval viability and recruitment of this species in the wild. Received: 4 February 1998 / Accepted: 10 July 1998  相似文献   

13.
The feeding biology of Branchiostoma senegalense Webb from the North-West African shelf region off Mauritania was investigated. The hindgut contained almost exclusively seston components, ranging in size from less than 1 m (bacteria size) to 300 m. Numerous chloroplasts of ingested phytoplankton appeared to be undigested. Dunaliella salina was still alive when leaving the anus after 1 to 2 h. Detritus formed the greater part of the gut contents. The authors conclude that the lancelets feed mainly on detritus and thus are indiscriminate suspension feeders.  相似文献   

14.
Turbot (Scophthalmus maximus L.) were reared at 12 and 16°C until 26 d after hatching. At both temperatures, starting at the neural plate stage, somites were initially formed every 75 min. Expressed as a percentage of development time (DT, fertilisation to 90% larvae hatching) somite formation occurred relatively earlier during embryogenesis at 12°C (45% DT) than at 16°C (55% DT). At 12°C, after the 32-somite stage the rate of somite formation decreased to one every 300 min. The larvae hatched after 6 d at 12°C and 3 d at 16°C at a relatively primitive stage of development, prior to the opening of the mouth and anus, with unpigmented eyes, and a straight gut. Temperature altered the relative timing of organogenesis in the larval stages. At 12°C, the following characters appeared (in this order): swimbladder>loop in the gut (at the time of yolk exhaustion)>caudal fin. In contrast, at 16°C, the caudal fin appeared at the same time as the loop in the gut. At 16°C, spines formed on the head in the region of the otic capsule at the time the swimbladder formed and the yolk was exhausted, but were absent in 12°C larvae. At both temperatures, in 1 d-old larvae the myotomes just behind the yolk-sac contained 200 inner muscle fibres (presumptive white muscle). The initial growth of inner muscle was largely due to hypertrophy, but by 26 d at 12°C and 11 d at 16°C hyperplastic growth became important, as evidenced by a significant increase in the number of small fibres (<10 m2). By 26 d the average number of inner muscle fibres had increased to 341 at 12°C and 988 at 16°C. New muscle fibres were added in distinct germinal zones at the dorsal and ventral apices of the myotomes. Metamorphosis was associated with a thickening of the superficial (presumptive red) muscle layer and the appearance of tonic muscle fibres.  相似文献   

15.
E. D. Houde 《Marine Biology》1974,26(3):271-285
In larvae of the bay anchovy Anchoa mitchilli (Valenciennes), the sea bream Archosargus rhomboidalis (Linnaeus), and the lined sole Achirus lineatus (Linnaeus), growth, survival, and starvation times were investigated at temperatures of 22° to 32°C. The rate at which hours after hatching until starvation decreased in relation to temperature for unfed larvae did not differ significantly among the 3 species, ranging from-5.4 to-6.3 h per degree increase in temperature. The total number of hours until starvation did differ for all 3 species: lined soles survived longest, bay anchovies were intermediate, and sea bream survived the least time. At 28°C, unfed sea bream could survive 90.1 h, bay anchovy 102.3 h, and lined sole 119.8 h. The eyes pigmented at nearly the same time after hatching for sea bream and bay anchovy, but took about 20 h longer at all temperatures for lined sole. Quadratic equations best described the relationship between hours after hatching when the eyes became pigmented and temperature. Eye-pigmentation times became nearly constant for all 3 species at temperatures above 28°C. At 28°C, eyes pigmented about 27 h after hatching for bay anchovy and sea bream but not until 47 h for lined sole. Hours after eye pigmentation when unfed larvae starved was a measure of the effective time that larvae had to commence feeding. Bay anchovies and lined soles were nearly alike in this respect, but sea bream starved at tewer hours after eye pigmentation. Slopes of regressions representing decrease in times to staration for increasing temperatures ranged from-3.7 to-4.4 h per degree increase in temperature, and were not significantly different among the 3 species. At 28°C, unfed lined soles starved at 70 a after eye pigmentation, bay anchovies starved at 72.5 h, and sea bream at only 62 h. Yolk absorption was most rapid for all species during the first 20 h after hatching, and was faster at higher temperatures. Amounts of yolk remaining at the time eyes became pigmented were less at higher temperatures for bay anchovy and lined sole, but were greater for sea bream, suggesting that sea bream used yolk more efficiently at higher temperatures. Either no yolk or small traces (>0.20%) remained at 24 h after eye pigmentation in all 3 species. Feeding was delayed for periods of 8, 16, 24, 32, 40 and 48 h after eye pigmentation for all species at a series of experimental temperatures from 24° to 32°C. Growth and survival were affected when food was withheld for more than 24 h at 28°C, but survival did not decrease markedly until food was withheld at least 8 h longer. At lower temperatures food could be withheld longer and at higher temperatures for less time. Feeding can be initiated by most larvae for several hours after all visible yolk reserves have been exhausted. All species tested can survive for 24 to 40 h after eye pigmentation at 24° to 28°C without food and still have relatively good growth and survival when food is offered. If the “critical period” is considered relative to time of hatching, lined soles need not find food for 3 to 3.5 days after hatching, but bay anchovy and sea bream must feed within 2.5 days of hatching.  相似文献   

16.
A study was undertaken to establish the role of free amino acids (FAA) in aerobic energy dissipation in embryos of turbot (Scophthalmus maximus) which contain an oil globule in the egg. Laboratory-reared developing eggs and larvae (15°C, 34 salinity) were measured for oxygen uptake, ammonia excretion, contents of FAA, protein, and ammonium, and volumes of yolksac and oil globule. Newly spawned eggs from different batches contained 55 to 90 nmol egg–1 of FAA. Resorption of FAA occurred in parallel with the consumption of yolk. Resorption of the oil globule, however, occurred predominantly after hatching and mainly after yolk resorption. The combined data suggest that approximately 70% of the FAA are utilized as an energy substrate, while the rest are polymerized into body proteins. FAA become a significant energy substrate in the early egg stage and account for 100% of the aerobic energy dissipation 2 d after Fertilization then decrease to ca. 60% at the time of hatching. Lipids derived from the oil globule seem to be the main fuel after hatching and account for ca. 90% of the energy dissipation at the onset of first-feeding. Thus, the energetics of fish embryos which contain an oil globule seems to be different from those that depend exclusively on the nutritional reserves of the yolk.  相似文献   

17.
以斑马鱼胚胎和幼鱼为实验对象,探讨三氯化铝(Al Cl3)在酸性环境中对斑马鱼幼鱼运动能力及学习记忆的影响。将受精后6 h(hours post-fertilization)的斑马鱼胚胎分成2个大组,分别为对照组和三氯化铝组,以观察三氯化铝的毒性作用。每一大组又分为中性(pH7.4)、微酸(pH6.4)和酸性(pH5.4)组,以观察酸性环境分别及与三氯化铝的共同毒性作用。分别采用72 hpf斑马鱼幼鱼机械逃避反射实验、144 hpf斑马鱼幼鱼自发运动、168 hpf单一多次光刺激斑马鱼幼鱼实验等探讨在中性、微酸和酸性环境下暴露铝离子对斑马鱼幼鱼运动能力以及学习记忆的影响。结果显示:与中性环境下的三氯化铝组相比,微酸和酸性环境下的三氯化铝组可以使斑马鱼幼鱼机械逃避次数减少(P0.05),平均速度和移动距离下降(P0.001),斑马鱼幼鱼运动轨迹杂乱无章,自发触壁活动减少;单一多次光刺激实验结果发现,微酸和酸性环境下的三氯化铝组使斑马鱼幼鱼到达平台速度的光照次数显著增加且差异具有统计学意义(P0.001)。以上结果说明,三氯化铝在微酸和酸性环境下,能导致斑马鱼幼鱼运动能力及学习记忆能力下降,并且酸度值越小,对斑马鱼幼鱼运动和学习记忆的影响更显著。酸度值与三氯化铝之间存在协同作用,酸性环境可以使三氯化铝毒性增加。  相似文献   

18.
The development of intestinal lipid absorption capacities was studied in larvae of the sea bassDicentrarchus labrax from the time of mouth opening to 25 d after hatching, in individuals fed with brine shrimp,Artemia sp. (Brazil commercial strain) or artificial diets. At the time of mouth opening, before the first feed, enterocytes synthesized lipoprotein particles from endogenous lipids. Starting with the first feed, enterocytes absorbed food lipids regardless of the diet, but since these cells have a low capacity for lipoprotein synthesis, they accumulated lipids in the form of free lipid droplets. In larvae fed withArtemia sp., the rapid development of enterocytes during growth was combined with increasingly effective lipoprotein synthesis (becoming even greater than that observed in the adult), starting on Days 18 to 19. Although lipoprotein synthesis and transport were observed in larvae given artificial feed, they showed abnormalities in their intestinal mucosa. Lipid droplets formed in association with the membrane structures of specimens given egg yolk during the first days of feeding, and enterocytes degenerated. In 18 to 19 d-old larvae given artificial feed, intestinal folds disappeared and the constituent cells showed limited differentiation. In the last-mentioned individuals, the abnormalities appeared to be related to malnutrition resulting from inadequacy of the food offered, which led to total mortality of larvae, beginning on Day 20.  相似文献   

19.
Developmental toxicity effects of endocrine disrupter chemicals, acephate and cypermethrin were studied in Bufo melanostictus tadpoles. Thirty developing eggs of B. melanostictus were exposed to each concentration (0.01, 0.05, 0.1, 0.5, and 1?µg?L?1) of acephate or cypermethrin in the laboratory (temperature: 23?±?1°C; photoperiod: 11.5–12.5?h). Eggs maintained in conditioned water alone served as controls. After hatching, larvae were fed on boiled spinach until the completion of metamorphosis. In control group, larvae that hatched on 3rd day were heavily pigmented, voracious feeders, and active swimmers; in these tadpoles, hind limb and forelimb-buds emerged on 16th and 24th day and metamorphosis was complete on 32nd day. Eggs exposed to acephate also hatched on 3rd day but larvae exhibited deformities such as, (i) tail distortions, (ii) laterally crooked trunk, (iii) decreased pigmentation, (iv) inactivity, (v) peeling of the skin, and (vi) delay in emergence of limbs and completion of metamorphosis. Cypermethrin-exposed eggs exhibited a delay (4–8 days) in hatching, there was no mortality, deformities in tail, trunk and head region, delay in the emergence of limbs, and completion of metamorphosis were evident. The demonstrated data indicate that these pesticides interfere with amphibian development when present in the aquatic system.  相似文献   

20.
Summary. Recent studies indicate that amphibian eggs are capable of hatching plasticity in response to chemical cues released by predators feeding on conspecific eggs or larvae. However, information is scarce on the relative importance of predator and conspecific cues in such a process. In particular, no attempt has been made to compare the effects of embryonic exposures to chemical cues indicative of a predation risk for eggs and larvae, although both life stages can co-occur in natural habitats. In this context, common frog embryos (Rana temporaria) were raised until hatching in the presence of crushed conspecific extracts from eggs and tadpoles to assess their respective influences on some hatching and larval traits. While a significant delay in hatching time was observed in embryos exposed to chemical cues from tadpole extract, this life-history shift appeared unaffected by embryonic exposure to egg extract. Hatchlings derived from eggs incubated in the presence of both conspecific extracts showed a significantly greater weight than unexposed controls. However, such an effect was no longer apparent 15, 30 and 50 days after hatching, suggesting that embryonic exposure to chemical cues from damaged conspecific eggs and tadpoles has no influence on larval growth. Lastly, morphological measurements performed on hatchlings and older tadpoles (15, 30 and 50 days old) revealed no significant effect of embryonic treatments on the shape of body and tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号