首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We diagnosed a pure partial trisomy of the long arm of chromosome 1 in a fetus with multiple malformations detected prenatally. The father was a carrier of a balanced rearrangement involving 46,XY,inv(1)(qter→p36::q32→qter::p36→q32). The fetus had preaxial polydactyly, low-set ears, macrocephaly, a prominent forehead, a broad and flat nasal bridge, a small mouth, an arched palate, micrognathia and unilateral renal agenesis. The couple had previously an infant with the same phenotypic abnormalities. The aberration was initially detected on amniocentesis with GTG banding and was confirmed by fluorescence in situ hybridization (FISH). Our case and other published pure trisomy 1q32-44 cases showed similarities, which allowed the further delineation of the trisomy 1q syndrome. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
We report on the prenatal diagnosis and ultrasonographic findings of a second-trimester fetus with jumping translocation involving chromosome 22. A 28-year-old gravida 2, partus 1, Turkish woman was referred for genetic counselling and ultrasonographic examination at 18 weeks' gestation because of a high risk of trisomy 21 in triple test. Prenatal ultrasonography showed tetralogy of Fallot with a diverticular dilatation of the pulmonary artery, flattened brow, complete absence of the right upper limb, hypospadias, oligodactyly (three digits) in left hand and in both feet, and hyperechogenic abdominal foci. Amniocentesis revealed a karyotype of 46,XY[4]/46,XY,−8,+ der(8),t(8;22)(q24.3;q11.21)[2]/45, XY,−22,−8,+ der(8)t(8;22)(q24.3;q11.21)[22]/45,XY,−22,−5,+ der(5)t(5;22)(q35.3;q11.21)[44]. A C-banding and FISH study with a specific centromeric probe (D14Z1/D22Z1) for chromosome 22 was made. In our case, partial monosomy for the regions 22q11.21→22pter, 8q24.3→8qter and 5q35.3→5qter may partially explain the fetal malformations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We report a prenatal case of a maternally inherited abnormal chromosome 16, originally interpreted as a pericentric inversion only, but after family studies re-interpreted as a pericentric inversion (16) accompanied by an unbalanced (7;16) translocation. Because of the inversion 16 and an elder son with developmental delay and craniofacial dysmorphic features, in the past karyotyped as 46,XY, the chromosomes 16 of the mother and son were carefully re-examined. Using a whole chromosome 16 paint and sub-telomere probes of 16p and 16q, the karyotype of the mother was shown to be 46,XX,inv(16)(p11.2q23.2).ish t(7;16)(q36;p13.3)inv(16). Subsequently one chromosome 16 of the elder son appeared to be a der(16)t(7;16)(q36;p13.3). This is probably the result of a meiotic crossover between the chromosomes 16 in the mother. The prenatal karyotype was finally interpreted as 46,XY,inv(16)(p11.2q23.2).ish der(16)t(7;16)(q36;p13.3)inv(16). This is the same cytogenetic imbalance as his elder brother: a partial trisomy of chromosome 7 (q36→qter) and a partial monosomy of chromosome 16 (p13.3→pter). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Here we describe a foetus with intrauterine growth retardation (IUGR), cerebral malformations and a 46,XY,der(1),t(1;6)(p36.3;q25.2) karyotype owing to a familial cryptic translocation segregating in three generations. A balanced translocation was present in the mother, the maternal uncle, the aunt and the grandmother. A female first cousin with dysmorphisms, hydrocephalus and mental retardation was a carrier of a partial trisomy 1p and a partial monosomy 6q. Multiple miscarriages were present in the family pedigree. Parents of the foetus had three other pregnancies: a male with a balanced translocation, and two foetuses with 1p36.3–pter monosomy and 6q25.2–qter trisomy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
46,XY, −22,+t(22;22)(p11;q11) or i(22q) was diagnosed in 15/15 cells from two cultures from the amniotic fluid culture of a 31-year-old patient whose fetus demonstrated cystic hygroma on ultrasound. Cytogenetic studies performed on fetal skin from the abortus revealed the same karyotype as that seen on amniocentesis, but the placenta demonstrated a 46,XY,46,XY, −22,+t(22;22) or i(22q) mosaicism, with 65 per cent of the cells being 46,XY. This case provides an example of placental mosaicism for a normal male karyotype, while the fetus demonstrated non-mosaic trisomy 22.  相似文献   

6.
CVS direct preparations usually achieve limited resolution and are better at detecting numerical rather than structural abnormalities. A CVS direct preparation analyzed using G-banding revealed a 47,XY,+G karyotype in 5 of 11 cells and was reported as mosaic for trisomy 21. Subsequent analysis of the CVS culture found only normal male cells. Amniocentesis revealed both normal male cells and cells with an extra F-group chromosome. Fluorescence in situ hybridization (FISH) identified this chromosome to be an isochromosome from the short arm of chromosome 12 [i(12)(p10)]. The amniocyte karyotype was reported as 47,XY,+i(12)(p10)[12]/46,XY[8].ish i(12)(p10)(wcp12+), which is associated with Pallister–Killian syndrome. Reexamination of the CVS direct preparation by FISH with a chromosome 12 centromere probe confirmed the karyotype of this tissue to be 47,XY,+mar[5]/46,XY[6].nuc ish 12cen(D12Z3 × 3)/12cen(D12Z3 × 2). Thus, multiple studies, including amniocentesis and fluorescence in situ hybridization, may be required to fully and accurately evaluate abnormalities detected by CVS. This case also indicates that mosaicism for supernumerary isochromosomes may have a complex origin. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Fluorescent in situ hybridization (FISH) with a 21q11-specific probe (CB21c1) consisting of three non-overlapping cosmids has been applied to interphase amniocytes of pregnancies at increased risk for fetal aneuploidy (N = 78) and to interphase lymphocytes, cultured and uncultured, of patients referred for Down syndrome (N = 19 and 28, respectively). In the uncultured amniocytes, six chromosome aberrations were detected: three cases of trisomy 21, a triploidy, a de novo 46,XX,t(21q21q), and a mosaic 46,XY/47,XY,+dic(21)(q11)/48,XY,+dic(21)(q11), +del(21)(q11). In 15 cultured and 20 uncultured blood samples, FISH correctly diagnosed trisomy 21 (full or mosaic) at the interphase level, which was confirmed in all cases by subsequent karyotyping. Because of specific and strong signals in interphase nuclei, CB21c1 appears to be a useful tool for the rapid detection of chromosome 21 abnormalities.  相似文献   

8.
We describe two cases of sonographic abnormalities associated with unusual chromosomal aberrations. Case 1 presented with a cystic hygroma at 12 weeks' gestation. Cytogenetic analysis revealed an unbalanced complex chromosome rearrangement implicating chromosomes 6, 13 and 21 (karyotype: 47,XX,t(6;21;14)(q14;q21;q21)mat,+21) and corresponding to a complete trisomy 21. This anomaly resulted from malsegregation of a maternal balanced three-way translocation. For case 2, an alobar holoprosencephaly was identified by ultrasonography at 23 weeks' gestation. Chromosomal analysis showed a recombinant rec (13), dup q chromosome, secondary to unequal crossing-over of a paternal pericentric inversion of chromosome 13, giving rise to partial trisomy 13q (karyotype: 46,XX,rec(13)dup(13q)inv(13)(p11q21)pat). These two cases illustrate the role of ultrasound in leading to detection not only of foetal chromosomal aberrations but also of rare balanced chromosomal rearrangements presented by one of the two parents. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
We report on a fetus with intrauterine growth retardation and multiple malformations diagnosed on ultrasound at 32 weeks. Examination of amniotic fluid cells in culture showed a 47,XY, i(16)(q10), +mar karyotype. Chromosome analysis of both parents was normal. Using spectral karyotyping, we identified the marker chromosome as a mitotically stable acentric marker chromosome derived from chromosome 16. Further studies using subtelomeric fluorescent probes confirmed the presence of an isochromosome for the long arm of chromosome 16 and showed that the acentric marker chromosome derived from the short arm of chromosome 16 leading to a trisomy for the long arm of chromosome 16. After genetic counseling, the parents decided to terminate the pregnancy. Fetal autopsy showed a male fetus with ambiguous external genitalia, cardiac malformation, megacystis and limbs anomalies as observed in other cases of trisomy for the long arm of chromosome 16. In addition, fetal brain examination showed vermian and olfactory bulb hypoplasia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
We report a case of paternal uniparental disomy for chromosome 11 that presented as severe intrauterine growth retardation. Autopsy following intrauterine death also revealed aberrant intestinal rotation and hypospadias. Chromosome analysis of direct preparations from placental biopsy showed an abnormal 47,XY,+11 karyotype. Analysis of long-term cultures from the placenta revealed 46,XY/47,XY,+11 mosaicism. Fluorescence in situ hybridization (FISH) studies on interphase nuclei confirmed trisomy 11 in multiple placental sites but detected only disomic cells in fetal skin. Investigation using microsatellite polymorphisms demonstrated paternal isodisomy at loci D11S909, D11S956, and D11S488, and paternal heterodisomy at locus D11S928.  相似文献   

11.
This communication presents the first case of complete trisomy 19q, prenatally detected by ultrasound investigation. Real-time high-resolution ultrasound examination was performed at 19 weeks of gestation. After termination of the pregnancy, autopsy investigation was done. GTG-banding, fluorescence in situ hybridization m-(FISH) analysis, and FISH analysis with a 19q subtelomeric specific probe were used for identification of the fetal karyotype. Sonographic examination revealed an enlarged cisterna magna, cerebellar hypoplasia and aplasia of the inferior part of the vermis, combined and bilateral kidney malformations, significant nuchal fold, absence of fetal nasal bones, and intracardial calcifications. Autopsy confirmed ultrasound findings, but also revealed situs viscerum inversus of the lungs. Fetal karyotype was defined as: 46,XY,der(21)t(19;21)(q11;p13)mat. Our ultrasound and autopsy findings will certainly contribute to better knowledge of phenotype characterization of this rare chromosomal disorder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Three cases of unusual chromosomal mosaicism are reported for which the cytogenetic data show inconsistent findings between CVS and AC or fetal tissue, and which cannot be explained simply by non-disjunction. For case 1, in CVS the karyotype was 46,XY, whereas lymphocytes and fibroblasts revealed 69,XXY. DNA fingerprinting indicated one paternal and two maternal chromosome sets, the latter most probably due to omission of maternal meiosis II. For case 2, in CVS mos 46,XX/47,XX,+mar de novo was observed. Amniotic fluid cells had the karyotype 46,XX. The origin of the marker chromosome might be explained by at least two events of unknown order (a somatic chromosome/chromatid deletion and non-disjunction of the homologous chromosome). In case 3 (CVS: mos 46,XY/46,XY,19q+ de novo; amniotic fluid cells, lymphocytes, and fibroblasts: 46,XY), the surplus of chromosome material in 19q+ might be explained on the basis of a somatic translocation. The idea of a chimera is less convincing, as the mosaic finding is restricted to one tissue. Furthermore, there was no hint of a vanishing twin. Hitherto, no case of structural chromosome mosaicism in CVS has been reconfirmed in fetal tissues.  相似文献   

13.
We report a case of maternal mosaic trisomy 21 ascertained at prenatal diagnosis as a result of maternal cell contamination of an amniotic fluid sample. A 34 year old female was referred for karyotyping because of a previous trisomy 21 pregnancy. Chromosome analysis of primary in situ cultures showed a karyotype of 47,XX, + 21[6]/46,XY[32]/46,XX[2]. Molecular testing demonstrated maternal cell contamination of the amniotic fluid sample and G-banded karyotyping of maternal blood showed that 3/200 cells had trisomy 21, consistent with the mother being a Down syndrome mosaic. A normal male baby with a 46,XY chromosome complement was delivered at 30 weeks. This case emphasises the need for close collaboration between cytogenetic and molecular genetics laboratories in resolving unusual cases of mosaicism. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
True structural chromosomal mosaicism are rare events in prenatal cytogenetics practice and may lead to diagnostic and prognostic problems. Here is described the case of a fetus carrying an abnormal chromosome 15 made of a whole chromosome 2p translocated on its short arm in 10% of the cells, in association with a normal cell line. The fetal karyotype was 46,XX,add(15)(p10).ish t(2;15)(p10;q10)(WCP2+)[3]/46,XX[27]. Pregnancy was terminated and fetus examination revealed a growth retardation associated with a dysmorphism including dolichocephaly, hypertelorism, high forehead, low-set ears with prominent anthelix and a small nose, which were characteristic of partial trisomy 2p. Possible aetiologies for prenatal mosaicism involving a chromosomal structural abnormality are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
From 1.3.73 to 30.9.80 5580 women had an amniocentesis performed here or elsewhere; fetal chromosome analyses were carried out in this laboratory. We found 112 abnormal karyotypes (2 per cent) out of 5591 chromosome analyses. In 40 women (0.7 per cent) no cytogenetic diagnosis was obtained. Follow-up was successful in 99.5 per cent. Nine cases are reported in detail: Three cases had discrepancy between the karyotype in amniotic fluid and peripheral blood after delivery, two of these cases turned out to be 46,XX (male) while the third was prenatally determined as trisomy 21, but had a 46,XX karyotype at birth. Six cases had discrepancy between the karyotype in amniotic fluid and the phenotypic outcome at birth/abortion. One case was a prenatally undetected 45,X/46,XY mosaicism; one case was an unexplained 45,X male fetus; two cases were prenatally determined as trisomy 21, but at abortion a normal karyotype was determined and in two cases maternal cells were probably examined. The incidence of cytogeneric errors in this study was very low.  相似文献   

16.
Extra genetic material that is euchromatic is generally regarded to be associated with phenotypic abnormalities. However, recent studies suggest that this is not always the case. Chromosome analysis was performed on amniotic fluid cells from a 37-year-old phenotypi-cally normal patient referred for advanced maternal age. All the cells analysed showed a karyotype of 46, XY, 1p-K The 1p+ chromosome had extra genetic material of uncertain origin in chromosome band region 1p21 →31. Chromosome analysis on the father revealed a normal 46, XY male karyotype. The mother's karyotype showed the same 1p+ chromosome. C and Q banding, as well as silver staining studies, in both the mother and the fetus support the interpretation that the extra chromosomal material was euchromatic in nature. This 1p + chromosome may be characterized as a euchromatic heteromorphism. Euchromatic hetero-morphisms not associated with phenotypic abnormalities have been reported for chromosomes 9 and 16. To the best of our knowledge, this is the first report involving this type of cytogenetic anomaly on chromosome number 1 in a phenotypically normal mother and infant.  相似文献   

17.
A prenatal diagnosis of partial monosomy 18p(18p11.2→pter) and trisomy 21q(21q22.3→qter) in a fetus with alobar holoprosencephaly (HPE) and premaxillary agenesis (PMA) but without the classical Down syndrome phenotype is reported. A 27-year-old primigravida woman was referred for genetic counselling at 21 weeks' gestation due to sonographic findings of craniofacial abnormalities. Level II ultrasonograms manifested alobar HPE and median orofacial cleft. Cytogenetic analysis and fluorescence in situ hybridization (FISH) on cells obtained from amniocentesis revealed partial monosomy 18p and a cryptic duplication of 21q,46,XY,der(18)t(18;21)(p11.2;q22.3), resulting from a maternal t(18;21) reciprocal translocation. The breakpoints were ascertained by molecular genetic analysis. The pregnancy was terminated. Autopsy showed alobar HPE with PMA, pituitary dysplasia, clinodactyly and classical 18p deletion phenotype but without the presence of major typical phenotypic features of Down syndrome. The phenotype of this antenatally diagnosed case is compared with those observed in six previously reported cases with monosomy 18p due to 18;21 translocation. The present study is the first report of concomitant deletion of HPE critical region of chromosome 18p11.3 and cryptic duplication of a small segment of distal chromosome 21q22.3 outside Down syndrome critical region. The present study shows that cytogenetic analyses are important in detecting chromosomal aberrations in pregnancies with prenatally detected craniofacial abnormalities, and adjunctive molecular investigations are useful in elucidating the genetic pathogenesis of dysmorphism. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An Erratum has been published for this article in Prenatal Diagnosis 22(11) 2002: 1056. We report a case of maternal isodisomy 10 combined with mosaic partial trisomy 10 (p12.31-q11.1). Chromosome examinations from a CVS sample showed a karyotype 47,XY,+mar/46,XY. The additional marker chromosome which was present in 6/25 interphase nuclei was shown by fluorescence in situ hybridization (FISH) to have been derived from a pericentromeric segment of chromosome 10. DNA analysis was performed from umbilical cord blood from the fetus after termination of the pregnancy at 18 weeks. The results showed that the two structurally normal chromosomes 10 were both of maternal origin, whereas the marker chromosome derived from the father. Autopsy of the fetus revealed hypoplasia of heart, liver, kidneys and suprarenal glands, but, apart from a right bifid ureter, no structural organ abnormalities. This fetus represents the second reported instance of a maternal uniparental disomy (UPD) 10. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
We present a pregnant woman with a fetus prenatally diagnosed as 46, XY,der(4) t(4;12) (q35.1; q21.2). This defect resulted from the unbalanced segregation of a paternal balanced translocation, t(4;12) (q35.1; q21.2). Prenatal ultrasound revealed borderline ventriculomegaly, a thick nuchal fold, pericardial effusion, arthrogryposis, a single umbilical artery, and micropenis. Fluorescence in situ hybridization (FISH) with whole chromosome painting probe and microarray-based comparative genomic hybridization analysis further confirmed chromosomal gain of terminal 12q. The woman had her pregnancy terminated at 20 weeks of gestational age. When compared with previously reported cases, the proband had characteristics common to the phenotypes of partial trisomy 12q, including an abnormal facial appearance and multiple anomalies. Additionally, this case had previously unreported phenotypes, such as arthrogryposis, a single umbilical artery, and a micropenis. Regarding the outcome of partial trisomy 12q, the fetuses carrying trisomies distal to 12q24 have a good chance of extended postnatal survival. In contrast, the cases with trisomies involving a larger amount of 12q likely die prenatally or within a few days after birth. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
We describe three cases in which we used fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) and comparative genomic hybridization (CGH) to characterize Y chromosome structural anomalies, unidentifiable by conventional G-banding. Case 1 was a 46,X,+mar karyotype; FISH analysis revealed an entire marker chromosome highlighted after hybridization with the Y chromosome painting probe. The PCR study showed the presence of Y chromosome markers AMG and SY620 and the absence of SY143, SY254 and SY147. CGH results confirmed the loss of Yq11.2-qter. These results indicated the presence of a deletion: del(Y)(q11.2). Case 2 was a 45,X [14]/46,XY[86] karyotype with a very small Y chromosome. The PCR study showed the presence of Y chromosome markers SY620 and AMG, and the absence of SY143, SY254 and SY147. CGH results showed gain of Yq11.2-pter and loss of Yq11.2-q12. These results show the presence of a Yp isodicentric: idic(Y)(q11.2). Case 3 was a 45,X,inv(9)(p11q12)[30]/46,X,idic(Y)(p11.3?),inv(9)(p11q12)[70] karyotype. The FISH signal covered all the abnormal Y chromosome using a Y chromosome paint. The PCR study showed the presence of Y chromosome markers AMG, SY620, SY143, SY254 and SY147. CGH only showed gain of Yq11.2-qter. These results support the presence of an unbalanced (Y;Y) translocation. Our results show that the combined use of molecular and classical cytogenetic methods in clinical diagnosis may allow a better delineation of the chromosome regions implicated in specific clinical disorders. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号