首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
双室微生物燃料电池处理硝酸盐废水   总被引:3,自引:1,他引:2  
基于双室微生物燃料电池(microbial fuel cell,MFC),针对阴极分别接种活性污泥(A-MFC)和反硝化细菌(D-MFC),研究其产电情况和硝酸盐废水去除效果。结果表明,在产电的同时都可有效去除废水中的硝酸盐污染物。在外接电阻100Ω的情况下,2种MFC均具有良好的产电性能,A-MFC和D-MFC达到的最大输出电压分别为119.6 mV和117.2mV,最大功率密度分别为23.40 mW/m2和26.63 mW/m2;同时两者在阴极室的平均反硝化速率分别为1.86 mg/(L.d)和2.19 mg/(L.d),阳极室的平均COD去除率分别为81.9%和82.4%。另外,通过扫描电镜观察可知,A-MFC和D-MFC阴极碳布表面形貌存在差异,并且阳极与阴极碳布表面形貌差异显著。  相似文献   

2.
构建了双室混合生物阴极微生物燃料电池(microbial fuel cell,MFC)处理高盐榨菜废水,探讨了不同电流强度对混合膜 MFC 脱氮的影响,并分析了产电特性及微生物群落特征。结果表明,高电流通量可缩短双室混合膜MFC的完全脱氮周期,且主要缩短的是稳定期周期。相对于其他3个实验组,电流强度最大的S3实验组硝酸盐平均去除速率((5.72±0.10) mg·(L·d)−1)与硝酸盐最高去除速率((8.45±0.15) mg·(L·d)−1)均最大,且实现总氮100%去除的时间最短(19 d),稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,这说明增大电流强度可促进混合膜MFC 电营养反硝化。电营养反硝化菌可直接利用电子进行反硝化反应,而较大的电子通量给阴极电活性自养脱氮微生物提供了丰富的生命燃料。在产电方面,曝气阶段开路电压(S1、S2、S3、S4分别为750、729、721、699 mV)随外加电阻的增大而增大,最大功率密度相差却并不显著(1.09、0.94、1.04、1.02 W·m−3);停止曝气阶段,阴极室电子受体的减少,导致MFC产电性能普遍下降,外电阻最大的S1实验组开路电压(746 mV)与最大功率密度(0.77 W·m−3)为最高。高通量测序结果表明,承担电营养反硝化功能的菌群可能为norank_f_Hydrogenophaga,Azoarcus。以上研究结果可为后续双室混合膜 MFC处理高盐废水提供技术参考。  相似文献   

3.
构建一种新型三室微生物脱盐电池(MDC),研究其脱盐产电并同步处理污染废水的效果。结果表明,阳极室为葡萄糖溶液,中间室盐溶液浓度5 g/L,阴极室为铁氰化钾溶液,闭合体系瞬时获得最高电压650 mV,同时脱盐效果良好,该MDC成功启动。其后,阴极室以重金属铬(200 mg/L)废水作为电子受体,中间室初始盐浓度为20 g/L、35 g/L,Cr(Ⅵ)平均还原率分别为1.06 mg/(L.h)和0.64 mg/(L.h),两者Cr(Ⅵ)的去除率均能达到80%以上,脱盐率分别为81.64%(20 g/L)和88.95%(35 g/L)。中间室盐浓度20 g/L时,获得最大输出电压466.6 mV,最大体积功率密度98.6 mW/m3,最佳内阻655.8Ω,库仑效率1.16%。表明该MDC系统具有良好的脱盐效果和处理废水效果。  相似文献   

4.
构建一种微生物燃料电池(MFC),首先将对氯酚在阴极室降解为苯酚,随后将阴极处理液在阳极室降解。研究了对氯酚废水经过阴阳双室分步处理后的去除效果和该MFC的产电性能,结果表明,在外电阻1 000 Ω时,阴极脱氯阶段最大输出电压为216 mV,产电周期为132 h;阳极降解阶段最大输出电压为277 mV,产电周期为48 h,对氯酚的总去除率为96.2%。实验结果表明该MFC能较好处理对氯酚废水,且与传统的生化处理技术相比,有较大的优势。  相似文献   

5.
废水中硝氮和COD浓度对AD-MFC脱氮产电性能的影响   总被引:1,自引:0,他引:1  
为探明废水中硝氮和COD浓度对阳极反硝化微生物燃料电池(AD-MFC)工作性能的影响,在批式操作下逐步提高进水浓度考察了AD-MFC反硝化速率和产电性能的变化,并以多个动力学模型对此过程进行拟合。结果表明,废水浓度可通过污染物降解速率来影响产电性能,硝氮浓度从50 mg/L升高至2 000 mg/L时,反硝化速率和输出电压逐渐达到最大值((1.26±0.01)kg N/(m3·d)和(1 016.75±4.74)mV),但硝氮浓度继续提高会抑制反硝化速率和产电性能。Han-Levenspiel模型可较好地表征AD-MFC的污染物降解和产电动力学行为,以该模型为基础建立了污染物去除速率、输出电压、功率密度与进水浓度之间的关系,反硝化在NO-3-N高于4 000 mg/L时才能被完全抑制。AD-MFC适用于处理不同浓度的硝酸盐废水,并对高浓度硝酸盐废水具有较好的耐受性。  相似文献   

6.
微生物燃料电池近年来被证实可以用来同步脱氮,然而微生物燃料电池中阴阳极室通常以不同成分的污水作为底物。为了实现废水脱氮,往往需要进行出水调配或停曝等复杂的操作。为解决上述问题,本研究构建了阴极硝化耦合阳极反硝化的四室微生物燃料电池(four chamber microbial fuel cell,FC-MFC),阳极室与阴极室之间用阳离子交换膜(cation exchange membrane,CEM)与阴离子交换膜(anion exchange membrane,AEM)进行交替分隔。在浓度差作用下离子进行定向迁移,最终实现阳极室有机物和氨氮的同步去除。探讨了阳极COD(即进水碳氮比)对FC-MFC产电及污染物去除效果的影响,并分析FC-MFC的氮去除途径。结果表明:随着阳极室COD的增加,各MFC模块的产电周期、峰值输出电压和最大功率密度随之增加,同时阳极室COD和TN的去除率也呈上升趋势,该系统对高碳氮比污水具有良好的抵抗负荷。当进水COD和NH4+-N质量浓度分别为1 100 mg·L−1和100 mg·L−1时,4个MFC模块的峰值输出电压介于526~619 mV,最大功率密度为103.47~121.00 mW·m−2,阳极室COD去除率和TN去除率分别高达94%和96%以上。氮去除途径分析结果表明,阳极室微生物吸附代谢作用、阴极室内源反硝化、阴极室通过AEM迁移至后序位阳极室进行反硝化过程分别贡献了25.96%~25.97%、0.91%~5.18%、68.87%~73.20%。  相似文献   

7.
为探查不同电子受体产电性能及对阳极微生物群落的影响,研究了3种电子受体(铁氰化钾、曝气阴极、过硫酸钾),构建了双室榨菜废水微生物燃料电池系统(microbial fuel cells,MFCs),实现了污水处理和能量回收的双重目的,探讨了不同电子受体(铁氰化钾、曝气阴极、过硫酸钾)对榨菜废水MFCs产电性能及阳极微生物群落的影响。结果表明:在产电性能方面,当过硫酸钾作为阴极电子受体时,电池输出电压、库仑效率、功率密度均优于另外2种常用阴极电子受体(铁氰化钾和氧气);在500 Ω的外接电阻间歇运行的条件下,其输出电压、库仑效率、功率密度分别为802 mV、(33±1.6)%、697 mW·m−2。阳极生物16S rRNA基因测序分析表明,水解发酵菌为榨菜废水微生物燃料电池阳极核心菌群,铁氰化钾、氧气和过硫酸钾MFCs阳极微生物菌群相对丰度分别为64.3%、63.6%和75.51%,包括LentimicrobiumSynergistaceaeSphaerochaetaAnaerolineaceaeDraconibacteriacea菌属。阴极电子受体不同的MFCs的阳极微生物群落核心菌群类似,但是丰度有所不同。势差较大的电子受体(过硫酸钾)微生物群落多样性和丰富度较高,产电和污染物去除效果较好。  相似文献   

8.
张倩  柳丽芬 《环境工程学报》2021,15(4):1270-1278
含难降解污染物的工业废水,处理难度大、成本高,如未达标却大量排放,会造成严重的水体污染并威胁生态平衡和人类健康。为了开发高效、节能和可持续的环保技术,制备了新型催化电极膜组件,并内置活性炭颗粒或负载二氧化锰的活性炭颗粒,以扩大阴极的总体积,研究了其在11 L上流式微生物燃料电池与膜生物反应器耦合系统中对焦化废水的处理效果,考察了其对系统的产电性能和废水处理效果。结果表明,在产电和水处理成效上,催化电极膜内放置负载二氧化锰的活性炭颗粒阴极的耦合体系>催化电极膜内置活性炭颗粒阴极的体系>碳纤维布电极内置活性炭颗粒阴极的体系。碳纤维负载催化剂电极膜及内置活性炭颗粒阴极的系统,最大功率密度为1 041.35 mW·m−3,比仅用碳纤维布的电极膜内置活性炭颗粒阴极的对照组,提高了7.4倍,系统内阻也由309 Ω减小至104 Ω,有效降低了能量损耗。催化电极膜内置负载二氧化锰活性炭颗粒阴极的耦合系统,可高效去除焦化废水中的COD和${ {\rm{NH}}_4^ + }$-N,去除率最高可达95.75%和92.81%;COD去除负荷为1.55 kg·(m3·d)−1,比对照组提高了25%。增大阴极曝气速率,可提高COD去除效率(另一焦化废水,出水COD值低于40 mg·L−1,达到一级排放标准);COD去除负荷达到1.67 kg·(m3·d)−1。该耦合体系对焦化废水具有较好的处理效果和较高的产电能力,可为焦化废水等工业废水的处理提供一种有效可行的新方法。  相似文献   

9.
研究了玉米秸秆生物炭作为微生物燃料电池电极的性能。阳极以S2-为单一电子供体,阴极以NO3-为电子受体,以碳毡为对照电极,考察玉米秸秆生物炭电极用于生物燃料电池同步脱硫反硝化的电化学性能、产电性能以及污染物去除能力,分析了不同硫氮质量浓度比对生物炭电极微生物燃料电池脱氮除硫效率以及输出电能的影响。结果表明,玉米秸秆生物炭电极微生物燃料电池实现了更高的交换电流密度(22.42×10-3 A·cm-2)和更低的电荷转移电阻(4.24Ω)。与碳毡电极相比,玉米秸秆生物炭电极微生物燃料电池最大输出电压和最大功率密度分别提升了18.91%和16.67%。当硫氮比为5:4时,反应器脱硫反硝化和产电能力最佳。阳极室S2-出水质量浓度由120 mg·L-1降至1.08 mg·L-1,去除率为99.1%,其中76.52%转化为SO42--S,阴极室NO3--N去除率...  相似文献   

10.
以厌氧污泥作为初始接种体,构建了单室微生物燃料电池(MFCs),考察了梯度驯化、直接驯化和间接驯化3种不同驯化方式对MFC降解苯酚及产电性能的影响。结果表明,MFC在闭路状态下对苯酚的降解速率比MFC在开路状态下的苯酚降解速率加快10%~20%,说明MFC在产电的同时,可加速苯酚的降解。当以600 mg/L的苯酚溶液为单一燃料,反应68 h后,3种驯化方式下的MFC对苯酚降解率都达到90%以上。相对于其他2种驯化方式,梯度驯化条件最有利于MFC产电性能的提高及苯酚的降解,其最大输出功率为31.3 mW/m2,降解速率提高了7%~20%。  相似文献   

11.
采用新型两相分配式生物反应器(TPPB)和前期研究得到的高效苯酚降解菌对高盐废水中苯酚的降解进行研究,研究中确定煤油为反应系统的最佳有机溶剂,并考察了废水苯酚含量、废水盐度以及搅拌器搅拌速度对苯酚降解的影响。结果表明,反应系统能正常降解苯酚含量为1 000~2 500 mg/L的高盐苯酚废水;反应系统在含盐量为100 g NaCl/L、搅拌速度为50 r/min的运行工况条件下,降解时间缩短为52 h,总酚去除率为20.58 mg/(L.h)。  相似文献   

12.
实际污水与模拟污水活性污泥系统的特性差异   总被引:2,自引:0,他引:2  
实验中经常采用人工配置的模拟生活污水,为了研究其与实际生活污水活性污泥系统的特性差异,采用2个序批式间歇反应器(SBR)进行平行实验(厌氧、好氧方式运行),系统地考察了在进水主要组分和运行参数相同的情况下,不同原水对活性污泥系统脱氮、除磷、比好氧速率、污泥絮体形态和出水水质等方面的影响。结果表明,模拟污水系统的硝化活性强于实际污水系统,两者的平均硝化速率分别为7.43 mg NH4+-N/(L.h)和5.55 mg NH4+-N/(L.h)。在前置厌氧段,模拟污水系统的释磷量比实际污水系统高出36.45%。两者在后续好氧阶段都能够充分吸磷。模拟污水系统的平均比好氧速率(SOUR)高达64.54 mg O2/(g MLSS.h),而实际污水系统的则只有32.81 mg O2/(g MLSS.h)。模拟污水系统的污泥絮体疏松,粒径小,形状不规则,沉降性差,沉后出水平均悬浮物浓度(SS)为20 mg/L;而实际污水系统的污泥絮体则密实、粒径大,沉降性好,沉后水十分清澈,SS几乎检测不出。  相似文献   

13.
从以苯酚为燃料且运行至稳定的微生物燃料电池阳极碳毡上筛选驯化获得一株能够降解高浓度苯酚的产电菌株ZY07,经18S rRNA序列分析,鉴定该菌为热带假丝酵母菌(Candida tropicalis)。初步探究了菌株ZY07的生物学特性和产电特性。结果表明,经驯化后,菌株ZY07的耐酚质量浓度可达到2 000 mg·L−1,48 h基本能完全降解1 700 mg·L−1的苯酚;菌株ZY07的最适生长及降酚条件为:接菌量为8%、pH为8、温度为35 ℃。循环伏安分析结果表明,菌株ZY07具有良好的电化学活性,以ZY07构建的MFC最大输出电压为0.72V,最大功率密度达48.02 mW·m−2;阳极碳毡扫描电镜显示,产电菌ZY07附着在碳毡表面形成生物膜。综合循环伏安和扫描电镜分析结果可推测,菌株ZY07是通过生物膜与电极表面直接接触的方式传递电子。  相似文献   

14.
碳源投加方式对SBR工艺脱氮速率的影响   总被引:1,自引:0,他引:1  
为了提高生物反应器的脱氮效率,研究采用SBR处理模拟生活污水,利用醋酸钠作为碳源,考察碳源投加方式对脱氮速率的影响。结果表明,当温度为10~15℃,进水COD为330~550 mg/L时,采用不同的碳源投加方式,COD去除率均高于95%。进水一次投加2.4 g碳源,COD平均反应速率为5.3 mg/(g·h),平均反硝化速率为0.28 mg/(g·h)。进水、反应器运行3 h时分别投加1.2 g碳源,COD平均反应速率为6.89 mg/(g·h),平均反硝化速率为0.37 mg/(g·h)。进水、反应6 h时分别投加1.2 g碳源,COD平均反应速率为6.50 mg/(g·h),平均反硝化速率为0.52 mg/(g·h)。进水投加1.2 g碳源、反应器运行3 h和6 h时分别投加0.6 g醋酸钠碳源,COD平均反应速率为6.2 mg/(g·h),平均反硝化速率为0.39 mg/(g·h)。分次投加碳源能够提高COD反应速率和TN去除率,同时保持较高的硝化反硝化速率。  相似文献   

15.
为实现对水环境重金属污染的实时原位监测,利用单室微生物燃料电池(microbial fuel cell,MFC)传感器搭建了单程连续流装置,并对其预警稳定性进行了探讨。结果表明:以Cr(VI)作为目标污染物,MFC传感器的检出限为0.4 mg·L−1,在0.2~1 mg·L−1的质量浓度区间内,库仑量抑制率与Cr(VI)质量浓度具有较高的共变趋势;设定模拟废水中Cr(VI)的质量浓度为1 mg·L−1,MFC传感器对乙酸钠质量浓度分别为384.62、480.77和576.92 mg·L−1的模拟废水预警的库仑量抑制率为34.71%±1.65%、36.60%±3.82%和36.28%±10.64%;对分别含有谷氨酸、乳酸和蔗糖(质量浓度均为50 mg·L−1)的模拟废水预警的库仑量抑制率为35.22%±6.51%、37.05%±3.74%和24.23%±1.90%,这说明MFC传感器对水样中的可生化降解有机物具有一定的抗干扰能力; MFC传感器连续3次对含有1 mg·L−1 Cr(VI)模拟废水预警的库仑量抑制率为35.37%±3.21%、39.48%±0.95%和41.50%±4.24%,证明MFC传感器的预警信号重现性较好。以上研究结果可为MFC传感器实时原位监测水体重金属污染提供技术参考。  相似文献   

16.
以玻璃纤维为载体,将TiO2负载到其表面形成了空间玻璃纤维反应器,引入Fe3+作为掺杂改性离子,形成了负载TiO2/Fe3+的空间玻璃纤维光催化反应器,并以高压汞灯为光源进行了光催化降解水中苯酚的实验研究,考察了影响苯酚光催化降解的因素,确定了在UV365~250 W光源照射下,pH为3~5,O2通入量1.0 L/(min.L),反应器内上升流速为0.7 m/min等实验条件下,初始浓度为30 mg/L的苯酚废水经120 min光催化反应后,降解率可达到85%,矿化率可达80%。  相似文献   

17.
通过构建铁炭微电解与微生物共作用预处理体系,以处理酚醛废水.分别考察了体系中COD、苯酚和甲醛的去除率.结果 表明:相较于单独的铁炭微电解或微生物处理体系,铁炭微电解与微生物的协同作用促进了苯酚和甲醛的降解,铁碳填料最佳投加量为1 400 g·L-1,污泥最佳接种量为10%;当进水COD为12 000mg·L-1、苯酚...  相似文献   

18.
焦化废水预处理系统中高效好氧污泥的培养驯化   总被引:1,自引:0,他引:1  
为了改善焦化废水在生化系统中的处理效果,驯化高效好氧活性污泥,研究焦化废水的预处理效果。研究表明,活性污泥驯化时间为2个月。进水量为150 L/d,容积负荷达到2 kg COD/(m3·d),SS浓度为2 000 mg/L,SV30达到20%,COD去除率为85%,挥发酚和氰化物去除率分别为100%和95%,对氨氮没有去除效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号