首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 890 毫秒
1.
磷酸铵镁沉淀法回收尿液中N和P的实验研究   总被引:1,自引:0,他引:1  
以源分离尿液为研究对象,在氨氮含量为2 850 mg N/L的微稀释尿液中,投加MgCl2.6H2O和Na2HPO4.12H2O,以磷酸铵镁沉淀法回收N和P。通过正交实验确定影响磷酸铵镁沉淀反应的因素依次为:pH值、PO34-∶NH4+、Mg2+∶NH4+、温度。在搅拌速度=100 r/min、反应温度=15℃、反应时间=10 min的条件下,实验分别考察了pH值、PO43-投加量、Mg2+投加量对磷酸铵镁沉淀法去除N、P的影响,结果表明最佳工艺条件为pH=9.5,Mg2+∶NH4+∶PO34-=1.3∶1.0∶1.0。最佳工艺条件下尿液中的NH4+-N可从2 850 mg/L降低到约125 mg/L;剩余磷酸盐浓度约7 mg/L。SEM及XRD分析表明,沉淀物的主要成分为呈斜方晶系的磷酸铵镁晶体。  相似文献   

2.
研究了使用氯化镁改性蛭石,利用磷酸铵镁沉淀的原理,在垃圾渗滤液中按比例加入PO43-,处理垃圾渗滤液中氨氮的同时,在蛭石上生成磷酸铵镁沉淀,以便于磷酸铵镁沉淀的回收利用。结果表明,筛取蛭石粒径为60~80目,配制浓度20%的氯化镁溶液浸泡改性蛭石20 min,取25 g改性蛭石,100 mL垃圾渗滤液调节pH为9,按n(NH4+)∶n(PO34-)=1∶1.2的比例加入PO43-离子,垃圾渗滤液中氨氮去除率为85.06%,实验并对磷酸铵镁沉淀进行了结构成分分析,为垃圾渗滤液中氨氮的处理及磷酸铵镁沉淀的回收提供了一种新的方法。  相似文献   

3.
采用苦土为沉淀剂对模拟氮磷废水和实际氮磷废水进行了脱氮除磷实验研究,探讨了苦土投加量、pH及反应时间对废水中氮磷去除率的影响。此外,对苦土处理氮磷废水的动力学进行了研究,并对苦土及反应沉淀物进行了XRD分析。结果表明,以苦土为沉淀剂,处理氨氮浓度为200 mg/L的模拟废水的最佳条件为:苦土与氨氮(NH4+-N)的质量比为25∶1,平衡时间10 min,氨氮去除率可达到93%,磷去除率达到99%。用苦土为沉淀剂处理南京某厂的实际氮磷废水(氨氮浓度为590 mg/L,磷浓度为1 630 mg/L),氨氮的去除率达到92%,磷的去除率达到99%。苦土处理氮磷废水的动力学数据符合二级动力学模型,主要以化学反应为主。处理后废水中沉淀物的XRD分析表明其主要成分为磷酸铵镁,进一步证明苦土处理氮磷废水主要以化学反应为主。  相似文献   

4.
鸟粪石结晶法去除垃圾渗滤液中NH_4~+-N的效果研究   总被引:1,自引:0,他引:1  
研究了鸟粪石结晶法对经混凝预处理后的垃圾渗滤液中NH4+-N的去除效果,考察了不同影响因素对NH4+-N去除效果的影响,并进行了磷酸铵镁(MgNH4PO4·6H2O,简称MAP)沉淀的表征及成分分析,并提出了反应后溶液中Mg2+、PO43-及MAP的回收利用办法。结果表明,反应的最佳条件为:pH8.5~9.5,Mg2+∶NH4+∶PO34-(摩尔比)=1.1∶1.0∶1.3,反应温度30℃,反应时间为25 min时,此时NH4+-N的去除率达94.70%;最佳沉淀剂投加组合为MgCl2.6 H2O与Na2HPO4·12H2O;pH为9.0时生成的沉淀符合典型MAP沉淀的晶体结构,生成的沉淀大部分为MAP,且没有氰化物、酚等有害物质的检出,而pH为10.5时生成的沉淀由许多疏松的微小沉淀颗粒组成,排列较杂乱,影响了沉淀的纯度。利用鸟粪石结晶法去除混凝预处理后的垃圾渗滤液中NH4+-N技术可行,经济效益合理,具有广阔的应用前景。  相似文献   

5.
用混凝沉淀-Fenton-NaClO氧化联合深度处理垃圾渗滤液,利用单因素变量法得出:混凝实验在PFS投加量为1.2g/L、pH=6、搅拌时间为30min的条件下进行,COD、氨氮和色度的去除率分别达到56.60%、15.62%和56.52%;混凝出水在初始pH为4、H2O2投加量为80mmol/L、n(H2O2)∶n(F2+)比为1∶1、反应时间为60min的条件下进行Fenton氧化,COD、氨氮和色度的去除率分别达到71.38%、21.43%和95.24%;Fenton氧化出水在pH为6、NaClO投加量为60mmol/L、反应时间为60min的条件下进行NaClO氧化,COD和氨氮去除率分别为83.42%和99.57%;联合工艺COD、氨氮和色度去除率分别为96.68%、99.69%和98.04%,出水浓度分别为63mg/L、0.47mg/L和18倍,均可满足《生活垃圾填埋污染控制标准(GB16889-2008)》中规定的排放标准。  相似文献   

6.
采用MAP-Fenton法对垃圾渗滤液进行预处理研究,以氨氮和COD的去除率为衡量指标,根据单因素实验和正交实验确定其最佳工艺条件。MAP阶段的最佳工艺条件:pH=9.5、Mg2+∶NH+4∶PO3-4(摩尔比)=1.3∶1.0∶1.3、反应时间为25min;Fenton阶段的最佳工艺条件:pH=3.5、30%(质量分数)H2O2投加量20mL/L、H2O2∶FeSO4·7H2O(摩尔比)=5∶1、反应时间为2.0h。在上述最佳工艺条件下,垃圾渗滤液氨氮和COD去除率的平均值分别为93.89%和90.12%。  相似文献   

7.
采用壳聚糖三元接枝高分子絮凝剂(CAS)与聚合氯化铝(PAC)、磷酸镁铵沉淀法(MAP法)复配处理中山市老虎坑垃圾渗滤液生化处理出水.絮体粒径分布测试、絮体形态结构分析和Zata电位测定结果表明,CAS与PAC复配,可充分发挥CAS架桥和PAC电荷中和的协同作用,强化混凝过程,使细小的凝聚体形成体积庞大的絮状沉淀物,并在沉降过程中,网捕水体中的胶体颗粒,显著提高混凝效果.CAS和PAC的投加对NH4 -N脱氮的贡献甚微.采用MAP法与CAS、PAC复配,当投加量分别为50mg/LCAS、500 mg/LPAC、856 mg/LMgCl2·6H2O、1509 mg/LNa2HPO4·12H2O时,出水COD、色度分别小于300 mg/L、30倍,NH4 -N降至2 mg/L左右.  相似文献   

8.
铁炭微电解-MAP沉淀法联合预处理垃圾渗滤液   总被引:2,自引:1,他引:1  
采用铁炭微电解-磷酸氨镁(MAP)沉淀法对垃圾渗滤液进行预处理,实验结果表明,铁炭比为5∶1,pH值为3,反应时间为3 h时,铁炭微电解的COD的去除率为47.5%;在投加药剂n(Mg2+)∶n(PO43-)∶n(NH4+)为1.4∶1∶1,pH值为9,反应时间为1 h的条件下,垃圾渗滤液氨氮去除率达到79.7%。  相似文献   

9.
磷酸铵镁法处理焦化厂高浓度氨氮废水   总被引:4,自引:0,他引:4  
介绍了酸铵镁(magnesiumammoniumphosphate,MAP)法处理高浓度氨氮废水的技术,研究了药剂配比、反应pH值以及药剂选择等因素对氨氮去除率的影响。试验结果表明,当在剩余氨水中投加MgCl2·6H2O和Na2HPO4·12H2O药剂,Mg2+∶NH+4∶PO3-4的摩尔比为1.4∶1∶0.9,反应pH值为8.5~9.5的条件下,原水的氨氮浓度可由2000mg/L降到15mg/L。并通过对反应沉淀物的结构成分分析,探讨了MAP作为有效缓释肥开发利用的可行性。  相似文献   

10.
采用磷酸铵镁(MAP)法去除垃圾渗滤液中的高浓度氨氮,对影响氨氮去除率的各个因素进行了研究.结果表明,MgC12与K2 HPO4的组合对氨氮去除效果最好,各因素对氨氮去除率的影响为磷氮比(以摩尔比计,镁氮比同)>初始pH>搅拌时间>搅拌速率>镁氮比.通过单因素试验得到MAP法的适宜条件:磷氮比1.2,初始pH 9.50,搅拌时间4 min,搅拌速率100r/min,镁氮比1.1,此时氨氮的去除率可达90%左右.在此条件下,获得的MgNH4PO4·6H2O(即鸟粪石)沉淀具有良好的沉降性能和脱水性能,出水pH在7.2~7.4.对经MAP法预处理的垃圾渗滤液出水进行一段时间的生物处理,工艺运行稳定,不存在曝气孔堵塞问题.  相似文献   

11.
Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.  相似文献   

12.
ASBR厌氧氨氧化反应器的快速启动及脱氮原理分析   总被引:3,自引:1,他引:2  
以城市生活污水为基本水质进行配水,采用ASBR研究了厌氧氨氧化反应器的快速启动过程及脱氮性能。实验条件如下:T为(35±1)℃、HRT为24 h、pH为7.2~7.5,进水NH4+-N、NO2--N浓度为40~160 mg/L,TN负荷为0.08~0.34 kg TN/(m3.d),按2∶1比例混合接种好氧短程硝化污泥和厌氧氨氧化污泥,经49 d运行成功启动厌氧氨氧化反应器,并实现稳定运行。实验结果表明:稳定运行期NH4+-N、NO2--N去除率分别达96%和98%;NH4+-N、NO2--N去除量与NO3--N生成量比值为1∶1.05∶0.29,较为接近理论值;成功启动的反应器出水pH高于进水;系统TN去除率平均值为79.7%;反应器内存在反硝化与厌氧氨氧化的协同作用,实现了部分COD去除;污泥由深棕色絮状变成红褐色颗粒状,经SEM扫描电镜观察污泥菌群种类单一,多为球状菌,有漏斗状缺口,具有典型氨氧化菌形态特征。  相似文献   

13.
鸟粪石结晶法回收垃圾渗滤液氨氮研究   总被引:7,自引:3,他引:4  
采用MgSO4·7H2O和Na2HPO4·12H2O使NH3-N生成MgNH4PO4·6H2O(鸟粪石)结晶沉淀法回收渗滤液中NH3-N。考察了pH值、反应时间、药剂配比对NH3-N去除率的影响。结果表明,鸟粪石结晶回收NH3-N反应的适宜pH值为9~9.5之间,过高的pH会破坏鸟粪石晶体结构,导致固定氨从MgNH4PO4中游离出来,不利于氨氮的去除。在pH值为9.5、反应时间为25 min、Mg2+∶NH+4∶PO3-4=1.5∶1∶1.5的最佳条件下,渗滤液中NH3-N浓度由初始3 500 mg/L,经结晶沉淀后降低至175 mg/L,去除率达95%。鸟粪石结晶沉淀过程中几乎不吸收重金属,同时回收了氨氮,其沉淀产物鸟粪石是一种优良的缓释肥原料。  相似文献   

14.
在静态水培实验条件下,对不同浓度垃圾渗滤液条件下凤眼莲的生长状况及其净化效果进行了研究。结果表明,在高浓度(COD 3 546.7 mg/L、NH3-N 527.5 mg/L、TP 8.02 mg/L)垃圾渗滤液条件下(HCL)凤眼莲全部被毒害致死,在中浓度(COD 1 233.3 mg/L、NH3-N 182.9 mg/L、TP 2.83 mg/L)垃圾渗滤液条件下(MCL)生长状况差,生物量减少为实验前的32.6%。在低浓度(COD 660.0 mg/L、NH3-N 99.7 mg/L、TP 1.59 mg/L)垃圾渗滤液条件下(LCL)能够正常生长,且对低浓度垃圾渗滤液有较好的净化效果。24 d后COD、NH3-N和TP的去除率分别为85.9%,99.8%和84.8%。COD与NH3-N均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》排放标准,TP达到《地表水环境质量标准(GB 3838-2002)》Ⅳ类排放标准。  相似文献   

15.
分段进水多级生物膜反应器脱氮效能影响因素研究   总被引:2,自引:1,他引:1  
采用分段进水多级生物膜反应器处理高氮低碳小城镇污水,考察负荷、溶解氧和温度对反应器脱氮效能的影响。实验结果表明:负荷、溶解氧和温度对反应器脱氮效能有显著影响。在水温为20~25℃,DO为5 mg/L,负荷为1 kgCOD/(m3.d),挂膜密度为30%,第1、3、6级分段进水,流量分配比为2∶2∶1的条件下,在反应器中可成功构建出高效同时硝化反硝化系统,出水COD、NH4+-N和TN浓度分别为33 mg/L、2.6 mg/L和29.4 mg/L,去除率分别为90.1%、96.0%和63.9%。当水温≤15℃时,硝化速率受温度的影响显著。  相似文献   

16.
以稳定渗滤液为处理对象,通过对其在山谷型填埋场覆盖层进行亚表面灌溉,研究了不同植被条件下植物的适应性、渗滤液水量削减负荷、COD和氨氮的去除率,以及灌溉对大气环境的影响。研究表明:夹竹桃是最适合进行渗滤液灌溉处理的植被;高羊茅作为草本植物,可作为夹竹桃的替代,也可与夹竹桃复种,形成双层植被;在渗滤液灌溉水力负荷为6mm/d、COD平均值为890mg/L、氨氮平均值为240mg/L的情况下,各灌溉区灌溉水量可削减50%~80%,COD平均去除率在90%以上,氨氮平均去除率在96%以上。  相似文献   

17.
超声波-TiO_2光催化联合处理垃圾渗滤液   总被引:4,自引:0,他引:4  
采用超声波强化TiO2光催化技术处理垃圾渗滤液。研究了TiO2催化剂用量、光照作用、超声波作用、pH值、曝气作用等因素对垃圾渗滤液中COD和氨氮去除率的影响。结果表明,在TiO2粉末的投加量为2 g/L、pH值为11时,先采用功率为292.5 W的超声波辐射3 min,再以高压汞灯(250 W)照射3 min,垃圾渗滤液中的COD和NH3-N去除率分别达到50.1%和75%。若在同一条件下进行饱和曝气可以使NH3-N去除率进一步达到85.3%,但会降低COD的去除率。  相似文献   

18.
实际污水与模拟污水活性污泥系统的特性差异   总被引:2,自引:0,他引:2  
实验中经常采用人工配置的模拟生活污水,为了研究其与实际生活污水活性污泥系统的特性差异,采用2个序批式间歇反应器(SBR)进行平行实验(厌氧、好氧方式运行),系统地考察了在进水主要组分和运行参数相同的情况下,不同原水对活性污泥系统脱氮、除磷、比好氧速率、污泥絮体形态和出水水质等方面的影响。结果表明,模拟污水系统的硝化活性强于实际污水系统,两者的平均硝化速率分别为7.43 mg NH4+-N/(L.h)和5.55 mg NH4+-N/(L.h)。在前置厌氧段,模拟污水系统的释磷量比实际污水系统高出36.45%。两者在后续好氧阶段都能够充分吸磷。模拟污水系统的平均比好氧速率(SOUR)高达64.54 mg O2/(g MLSS.h),而实际污水系统的则只有32.81 mg O2/(g MLSS.h)。模拟污水系统的污泥絮体疏松,粒径小,形状不规则,沉降性差,沉后出水平均悬浮物浓度(SS)为20 mg/L;而实际污水系统的污泥絮体则密实、粒径大,沉降性好,沉后水十分清澈,SS几乎检测不出。  相似文献   

19.
Fenton's pre-treatment of mature landfill leachate   总被引:20,自引:0,他引:20  
Lopez A  Pagano M  Volpe A  Di Pinto AC 《Chemosphere》2004,54(7):1005-1010
The aim of this study was to check the effectiveness of the Fenton's reagent (Fe2+ + H2O2 + H+) for the pre-treatment of a municipal landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The leachate came from a municipal sanitary landfill located in southern Italy and the average values of its main parameters were: pH=8.2; COD=10,540 mgl(-1); BOD5=2,300 mgl(-1); TOC=3,900 mgl(-1); NH4-N=5210 mgl(-1); conductivity=45,350 microScm(-1); alkalinity=21,470 mgl(-1) CaCO3. The effect of initial pH value on the pre-treatment effectiveness was evaluated by titrating the amount of acidic by-products formed. The extent of leachate oxidation was monitored and controlled by both pH and redox potential measurements. The best operational conditions for achieving the desired goal (i.e., BOD5/COD> or =0.5) resulted: Fe2+=275 mgl(-1); H2O2=3,300 mgl(-1); initial pH=3; reaction time=2 h. At the end of the Fenton's pre-treatment, in order to permit a subsequent biological treatment, residual ferric ions were removed increasing the pH up to 8.5 by adding 3 gl(-1) of Ca(OH)2 and 3 mgl(-1) of a cationic polyelectrolyte, the latter as an aid to coagulation. This final step also resulted in a further modest removal of residual COD due to co-precipitation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号