首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retention of 137Cs in various types of Andosols in Iceland was investigated. Soils were sampled at 29 sites with varying precipitation and environmental conditions. Samples were obtained from 0 to 5, 5 to 10, and 10 to 15 cm depths. The amount of radiocaesium present was quite variable, ranging between 300 and 4800 Bq m(-2) and correlated closely to total annual precipitation (r2=0.71). The majority of 137Cs, 82.7% on average, was retained in the uppermost 5 cm of the soil. The greatest penetration of 137Cs was observed for organic Histosols (76.3% in top 5 cm). The Icelandic Vitrisols (barren, poorly developed Andosols) are coarse grained with only 2-5% clay content and contain little organic matter (<1%). Yet these soils retained 74% of 137Cs in the top 5 cm. The results indicate that radiocaesium fallout is strongly retained by colloidal materials characteristic of Andosols, such as allophane and ferrihydrite. Most soils in Iceland are subject to severe and prolonged freezing and waterlogging; despite this, 137Cs is retained in the upper soil horizons and vertical migration is negligible in Icelandic Andosols. However, erosion and aeolian activity can markedly influence the amount and vertical distribution of radiocaesium in Icelandic soils.  相似文献   

2.
The significance of exchange sites on organic matter in the retention of radiocaesium in highly organic soils remains unclear. To quantify this retention, we measured the binding of 134Cs to a humic acid isolated from a British upland peat soil, under a range of chemical conditions. We interpreted our results using Humic Ion Binding Model V, a model of humic substance chemistry which simulates ion exchange by non-specific accumulation of cations adjacent to the humic molecules. Model V could simulate the humic acid-solution partitioning of Cs under all the solution conditions used. The model was used to estimate the contribution of organic matter to Cs sorption by the whole soil composite. An estimate of Cs sorption by illite frayed edge sites was also made. These simulations show that organic matter may play only a minor role in binding Cs. even in highly organic soils.  相似文献   

3.
The adsorption properties of reference minerals may be considerably modified by the presence of the inorganic and organic coatings that are ubiquitous in soils. It is therefore important to assess the effect of such coatings to evaluate the relevance of adsorption studies on pure minerals. The adsorption of trace amounts of (85)Sr and (137)Cs has been studied in dilute suspensions for various minerals that are common components of soils: quartz, calcium carbonate, kaolinite, montmorillonite and illite. We studied the effect of coatings with either Fe or Al oxide with varying additions of soil-extracted humic or fulvic acid. Both adsorption and desorption were measured and data presented as distribution coefficients, Kd. No adsorption was detected on quartz and it was not possible to coat this surface. Adsorption on calcium carbonate was small and not influenced by coatings. Adsorption of Sr on the three clay minerals was very similar, enhanced by the Al-coating, but not affected by Fe and organic coatings. The presence of organic coatings decreased Cs adsorption on illite. Similar but smaller effects were seen on montmorillonite and kaolinite. Aluminum coating enhanced Cs adsorption on illite, whereas both inorganic coatings caused decreases in adsorption on montmorillonite, and there was no effect on kaolinite. Effects were not additive with mixed, organic-inorganic coatings. Adsorption of both Cs and Sr on all minerals was strongly irreversible, with Kd (desorption) being up to four-times greater than adsorption Kd. The ratio of desorption and adsorption Cs Kd values (an assessment of irreversibility) was inversely related to adsorption Kd. This is consistent with a decreasing contribution of high-affinity adsorption as adsorption increases, but may also reflect the partial loss of organic coatings during desorption.  相似文献   

4.
A model predicting plant uptake of radiocaesium based on soil characteristics is described. Three soil parameters required to determine radiocaesium bioavailability in soils are estimated in the model: the labile caesium distribution coefficient (kd1), K+ concentration in the soil solution [mK] and the soil solution-->plant radiocaesium concentration factor (CF, Bq kg-1 plant/Bq dm-3). These were determined as functions of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic matter content. The effect of time on radiocaesium fixation was described using a previously published double exponential equation, modified for the effect of soil organic matter as a non-fixing adsorbent. The model was parameterised using radiocaesium uptake data from two pot trials conducted separately using ryegrass (Lolium perenne) on mineral soils and bent grass (Agrostis capillaris) on organic soils. This resulted in a significant fit to the observed transfer factor (TF, Bq kg-1 plant/Bq kg-1 whole soil) (P < 0.001, n = 58) and soil solution K+ concentration (mK, mol dm-3) (P < 0.001, n = 58). Without further parameterisation the model was tested against independent radiocaesium uptake data for barley (n = 71) using a database of published and unpublished information covering contamination time periods of 1.2-10 years (transfer factors ranged from 0.001 to 0.1). The model accounted for 52% (n = 71, P < 0.001) of the observed variation in log transfer factor.  相似文献   

5.
This paper aims to give an overview of the effect of organic matter on soil-radiocaesium interaction and its implications on soil-to-plant transfer. Studies carried out after the Chernobyl accident have shown that high 137CS soil-to-plant transfer persists in organic soils over years. In most of these soils, the specific sites in clays control radiocaesium adsorption, organic compounds having an indirect effect. Only in organic soils with more than 95% of organic matter content and negligible clay content does adsorption occur mostly on non-specific sites. After a contamination event, two main factors account for the high transfer: the low solid-liquid distribution coefficient, which is due to the low clay content and high NH4+ concentration in the soil solution, and the low K+ availability, which enhances root uptake. The estimation of the reversibly adsorbed fraction, by means of desorption protocols, agrees with the former conclusions, since it cannot be correlated with the organic matter content and shows the lack of specificity of the adsorption in the organic phase. Moreover, the time-dependent pattern of the exchangeable fraction is related to soil-plant transfer dynamics.  相似文献   

6.
In this work, soil-to-plant transfer factors of radiocaesium are predicted based on soil properties such as pH, organic matter content, exchangeable K+ and clay content valid for the tropical environments in Bangladesh, China and Japan, and using a previously published model. Due to insufficient data of soil properties in the selected regions, the average values of pH, organic matter content, exchangeable K+ and clay content were taken as the input model parameters within the ranges given for Asia. Nevertheless, a complete set of soil properties of Japanese soils was used to compare the measured and calculated TF values of radiocaesium for radish. The calculated TF values for radiocaesium are comparable with the measured values especially for leafy parts of a plant. However, calculated values for rice, an important crop in Asia are found to overestimate the measured values due to an overestimate of calculated CECs in soils in the selected regions. The empirical parameters used in the model need to be re-evaluated for the specific part of a plant and/or for a variety of different plants. Alternatively, a general conversion factor for each part of a plant and/or for a variety of different plants for a specific region is suggested for tropical environments.  相似文献   

7.
The Chernobyl nuclear accident in 1986 not only caused serious ecological problems in both the Ukraine and Belarus, which continue to the present day, but also contaminated a large part of the higher latitudes of the northern hemisphere. In this paper an overview is given of the latter problems in upland UK, where ecological problems still remain some 17 years after initial contamination. Following deposition of radiocaesium and radioiodine in May 1986, measurements of radioactivity in grass and soil indicated a rapidly declining problem as the radioiodine decayed and the radiocaesium became immobilised by attachment to clay particles. However, these studies, as well as the advice received by the Ministry of Agriculture, Fisheries and Food, were based on lowland agricultural soils, with high clay and low organic matter contents. The behaviour of radiocaesium in upland UK turned out to be dominated by high and persistent levels of mobility and bioavailability. This resulted in the free passage of radiocaesium through the food chain and into sheep. Consequently the Ministry banned the sale and movement of sheep over large areas of upland Britain, with bans remaining on some farms to the present day. Present day predictions suggest that these bans will continue in some cases for some years to come. The causes of radiocaesium mobility in upland areas have subsequently been the subject of intense investigation centred around vegetation and, in particular, soil characteristics. Soil types were identified which were particularly vulnerable in this respect and, where these coincided with high levels of deposition, sheep bans tended to be imposed. While much of the earlier work suggested that a low clay content was the main reason for continuing mobility, a very high organic matter content is now also believed to play a major role, this being a characteristic of wet and acidic upland UK soils. The overall message from this affair is the importance of a fundamental understanding of biogeochemical pathways in different ecosystems when attempting to predict the impacts of large-scale contamination.  相似文献   

8.
The methodology for estimating radiocaesium distribution between solid and liquid phases in lakes is applied for three prealpine lakes: Lake Constance (Germany), Lake Lugano (Switzerland) and Lake Vorsee (Germany). It is based on use of the exchangeable distribution coefficient and application of the exchangeable radiocaesium interception potential (RIPex). The methodology was tested against experimental data. Good agreement was found between estimated and measured 137Cs concentrations in Lake Constance and Lake Lugano, whereas for Lake Vorsee a discrepancy was found. Bottom sediments in Lake Vorsee are composed mainly of organic material and probably cannot be described in terms of the specific sorption characteristics attributed to illitic clay minerals.  相似文献   

9.
In this study, we measured 137Cs activity concentrations in the soil samples taken from agricultural lands in the Buyuk Menderes Basin in Turkey in 1997 and 1998. The soil samples were collected from 42 sites in this Basin. The activity concentration of 137Cs was found to range between 2.81+/-0.17 Bq.kg(-1) and 20.75+/-0.29 Bq.kg(-1). The effect of organic matter, clay, silt and sand contents and pH of the soil on the relative adsorption of the 137Cs on the soil surface were also studied.  相似文献   

10.
11.
To understand the behavior of (137)Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of (137)Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of (137)Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, (137)Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of (137)Cs labile fractions--bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter--were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of (137)Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable (137)Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals.  相似文献   

12.
Here we review some of the main processes and key parameters affecting the mobility of radiocesium in soils of semi-natural areas. We further illustrate them in a collection of soil surface horizons which largely differ in their organic matter contents. In soils, specific retention of radiocesium occurs in a very small number of sorbing sites, which are the frayed edge sites (FES) born out of weathered micaceous minerals. The FES abundance directly governs the mobility of trace Cs in the rhizosphere and thus its transfer from soil to plant. Here, we show that the accumulation of organic matter in topsoils can exert a dilution of FES-bearing minerals in the thick humus of some forest soils. Consequently, such accumulation significantly contributes to increasing 137Cs soil-to-plant transfer. Potassium depletion and extensive exploration of the organic horizons by plant roots can further enhance the contamination hazard. As humus thickness depends on both ecological conditions and forest management. our observations support the following ideas: (1) forest ecosystems can be classified according to their sensitivity to radiocesium bio-recycling, (2) specific forest management could be searched to decrease such bio-recycling.  相似文献   

13.
Adherent soil may contribute a large proportion of the radiocaesium content of sampled vegetation. Consequently, inadvertent ingestion of adherent soil can contribute significantly to the radiocaesium intake of grazing animals, and needs to be accounted for within radiological assessments. However, accurate estimation of the degree of soil adhesion on vegetation is acknowledged to be difficult. To determine the relative contributions of vegetation and soil to the radiocaesium contamination of milk and tissues, soil-specific estimation of radiocaesium bioavailability values would be required. Here we suggest that a previously developed in-vitro bioavailability assay (involving a 2 h extraction with 0.1 M stable CsCl) can be used to estimate the true absorption coefficient of radiocaesium associated with sampled vegetation directly. Using this technique, seasonal trends in bioavailability are demonstrated to vary in accordance with estimations of the degree of soil adherent to vegetation collected from an upland pasture. The use of this technique would negate the need for detailed measurements of the amount of soil adhering to sampled vegetation and soil-specific radiocaesium bioavailability assessments.  相似文献   

14.
In this work the role of organic matter in the potential mobility and bioavailability of 137Cs and 60Co in Brazilian soil was investigated. Radish was cultivated in pots containing the top layer (0-20 cm) of a Histosol, Ferralsol and Nitisol spiked with 137Cs and 60Co. In the case of the Ferralsol and Nitisol samples, besides the control, two different rates of organic amendments were used. In these soils, a sequential extraction protocol was used to identify the main soil compartments that could be responsible for the variation of transfer factor values. Our results indicate that organic amendment could be suggested as a practical countermeasure for 137Cs and 60Co contamination, since it reduces bioavailability of radionuclides and, consequently, soil to plant transfer factor values by almost one order of magnitude in a short period of time.  相似文献   

15.
An existing model of radiocaesium transfer to grasses was extended to include wheat and barley and parameterised using data from a wide range of soils and contact times. The model structure was revised and evaluated using a subset of the available data which was not used for model parameterisation. The resulting model was then used as a basis for systematic model reduction to test the utility of the model components. This analysis suggested that the use of 4 model variables (relating to radiocaesium adsorption on organic matter and the pH sensitivity of soil solution potassium concentration) and 1 model input (pH) are not required. The results of this analysis were used to develop a reduced model which was further evaluated in terms of comparisons to observations. The reduced model had an improved empirical performance and fewer adjustable parameters and soil characteristic inputs.  相似文献   

16.
Changes in soil solution composition after a flooding event were hypothesised to be one of the key factors in explaining changes in radiocaesium incorporation in the food chain in the areas affected by the Chernobyl accident. A laboratory methodology was set up to monitor changes in the soil solution composition after a sequence of flooding cycles. Experiments were performed using column and batch approaches on test soils with contrasting initial soil solution composition (high and low initial concentrations of K+). Results from column experiments indicated a potential increase in NH(4)(+) concentrations, a parameter which could lead to an increase in the radiocaesium root uptake. Batch results in the soil with high initial K+ concentration showed that after a number of flooding cycles, especially for high ratios of flooding solution/mass of soil, K+ concentration decreased sometimes below a threshold value (around 0.5-1 mmol l(-1)), a fact that could lead to an increase in radiocaesium transfer. For the soils with a low initial K+ concentration, the flooding solution increased K+ and NH(4)(+) values in the soil solution. The comparison of test soils with soils from Ukraine areas affected by flooding showed that the final stage in soil solution composition was similar in both cases, regardless of the initial composition of the soil solution. Moreover, the comparison with unflooded soils from the same area showed that potential changes in other soil parameters, such as (137)Cs activity concentration, clay content, and radiocaesium interception potential, RIP (a parameter that estimates the radiocaesium specific sorption capacity of a soil), should also be monitored for additional effects due to the flooding event. Therefore, the changes in the root uptake would depend on the resulting situation from changes in RIP, K+ and NH(4)(+) values in the soil solution.  相似文献   

17.
The potential of soil microorganisms to enhance the retention of (137)Cs and (85)Sr in organic systems was assessed in a series of experiments. A biologically active, 'mineral-free', organic material, produced under laboratory conditions from leaves, was used as the uptake matrix in all experiments to minimise potential interference from competing clay minerals. Biological uptake and release were differentiated from abiotic processes by comparing the sorption of radionuclides in sterilised organic material with sterile material inoculated with soil extracts or single fungal strains. Our results show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material. The presence of soil microorganisms significantly enhanced the retention of Cs in organic systems and approximately 70% of the Cs spike was strongly (irreversibly) bound (remained non-extractable) in the presence of microorganisms compared to only approximately 10% in abiotic systems. Sorption of (85)Sr was not significantly influenced by the presence of soil microorganisms. A non-linear temperature response was observed for the retention in biotic systems with increased uptake at between 10 and 30 degrees C and lower retention at temperatures above or below the optimum range. The optimum temperatures for biological uptake were between 15 and 20 degrees C for Cs, and 25 and 30 degrees C for Sr. Our results indicate that single strains of soil and saprotrophic fungi make an important contribution to the sorption of Cs and Sr in organic systems, but can only account for part of the strong, irreversible binding observed in biotic systems. Single strains of soil fungi increased the amount of non-extractable (137)Cs (by approximately 30%) and (85)Sr (by approximately 20%) in the organic systems as compared to abiotic systems, but the major fraction of (137)Cs and (85)Sr sorbed in systems inoculated with saprotrophic fungi remained extractable.  相似文献   

18.
A sward will often have significant amounts of soil adhered to the vegetation surfaces which will be ingested by grazing animals. If the soil is contaminated by radioactive fallout then it can serve as a dietary source of radionuclides, in addition to any root uptake by the plants. This study is an attempt to quantitatively assess the importance of soil adhesion as a source of radiocaesium to sheep using the RUINS model which simulates radiocaesium transfer in grazing systems.The method of simulating the contamination of vegetation surfaces used by the RUINS model is described, and the importance of the availability of radiocaesium associated with adhered soil relative to plant incorporated radiocaesium discussed. Two sets of simulations are presented: one in which the soil is treated as a medium providing a uniform availability of radiocaesium, and the second in which account is taken of the partitioning of radiocaesium in the soil between ‘fixed’ and ‘labile’ phases.The results demonstrate that, because of the reduced absorption in the gut of radiocaesium associated with soil, animals grazing pastures with significant amounts of radiocaesium associated with adhered soil will not be as contaminated as radiocaesium activity concentrations measured in bulk vegetation samples would suggest. Therefore, the extent of soil adhesion needs to be considered if predictions of radiocaesium contamination of animal products are to be made on the basis of measured activities of sampled vegetation. However, soil adhesion is unlikely to be a significant dietary source of available radiocaesium, unless the soil concerned exhibits an unusually high bioavailability of radiocaesium. Moreover the simulation results indicate that differences in availability between soil types observed experimentally are consistent with the partitioning between fixed and labile soil compartments made by the RUINS model.  相似文献   

19.
The environmental influence on Chernobyl-derived 137Cs levels in perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.) was revealed using partial least-squares regression (PLS). The 53 environmental predictors used describe land use in catchment areas, various catchment area and lake characteristics, lake water chemistry, and fish stock composition. The study showed a profound effect of land use on the 137Cs levels in fish. Radiocaesium deposited on arable land was retained in the soil to a greater extent than was 137Cs deposited on wetlands, which more easily leached out to the lake ecosystems. The 137Cs deposition close to the lakes had a more pronounced effect on 137Cs levels in the fish than did more distant deposition. The radiocaesium bioavailability is mainly governed by lake water cation content, as hardwater lakes had significantly lower 137Cs content in fish. Resuspension of 137Cs contaminated sediments only had a limited influence on the observed levels in fish.  相似文献   

20.
The association of radiocaesium with particle size fractions separated by sieving and settling from soils sampled eight years after the Chernobyl accident has been determined. The three size fractions were: <2 microm, 2-63 microm and >63 microm. 137Cs in the soil samples was associated essentially with the finer size fractions, which generally showed specific activities 3-5 times higher than the bulk samples. Activity ratios of 134Cs/137Cs in the clay-sized fractions appear to be lower with respect to the corresponding values in bulk soil samples. This result indicates that some differences still exists in the particle size distribution between 137Cs originating from nuclear weapons, which has been in the soil for decades after fallout, and 137Cs coming from the Chernobyl accident, eight years after the deposition event. This behaviour could be related to "ageing" processes of radiocaesium in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号