首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solar ultraviolet radiation (UVR, 280-400 nm) is known to cause a number of detrimental effects in aquatic organisms. The area of Patagonia, which is sometimes under the influence of the Antarctic ozone "hole", occasionally receives enhanced levels of ultraviolet B radiation (UV-B, 280-315 nm). Great efforts have been put into creating a database for UVR climatology by installing a variety of instruments in several localities in the region. However, no comparable effort has been made to determine the impact of normal and enhanced levels of solar UVR upon organisms. Most of the photobiological research in aquatic systems of Patagonia has focused on determining the effects of solar UVR in phytoplankton photosynthesis, DNA damage, and mortality, fecundity and repair mechanisms in zooplanktonic species. Some work has also been done with fish larvae and interactions between species at low trophic levels of the aquatic food web. The results of these studies indicate that in order to assess the overall impact of UVR in a certain waterbody, it is also necessary to consider other variables, such as changes in cloudiness, ozone concentrations, differential sensitivity of organisms, and depth of the upper mixed layer/epilimnion. All factors that can preclude or benefit the acclimation of species to solar radiation.  相似文献   

2.
Effects of ultraviolet-B (UV-B) radiation on amphibian embryos have been investigated in a number of studies, but the effects on larvae have received less attention. We investigated the effects of UV-B radiation on the behaviour and growth of larvae of three amphibians (Rana arvalis, Rana temporaria and Bufo bufo) in two different experiments. First, we tested whether larvae of the three species actively avoid UV-B exposure if given a choice. We found no evidence for active avoidance of UV-B or changes in activity in the presence of UV-B in any of the species. Second, we assessed the effects of natural (1.25 kJm(-2)) and enhanced (1.58 kJm(-2)) UV-B radiation on the survival and growth of the three species and found that the exposure to UV-B radiation did not have any effect on survival rates of any of the species. However, UV-B radiation had a positive effect on the growth of R. arvalis and R. temporaria, whereas the growth of B. bufo tadpoles was unaffected by the UV-B treatments. Our results suggest that a short-term exposure to UV-B radiation does not induce any UV-B avoidance behaviour in tadpoles of these three species. Furthermore, unlike some previous studies, the results suggest that the young tadpoles of these species are not negatively affected by UV-B radiation. In fact, our results demonstrate that a moderate amount of UV-B radiation enhance tadpole growth rates in two of the three species.  相似文献   

3.
Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed.  相似文献   

4.
Many species of amphibians have experienced population and range reductions. It has been hypothesized that sensitivity to UV-B may contribute to the population declines of some amphibian species. We performed field experiments to measure the effects of solar UV-B on the hatching success of three Finnish anuran species, the common frog (Rana temporaria), moor frog (Rana arvalis) and common toad (Bufo bufo). Further, the effects of natural UV-B radiation on survival of the tadpoles of the same three species of anurans were tested. A significant percentage of R. temporaria and B. bufo embryos survived when exposed to and protected from solar UV-B and hatching success was not affected by solar radiation. Elimination of solar UV-B significantly increased the hatching success of R. arvalis, but embryonic mortality was high in both treatments. The data indicates that under natural conditions, solar UV-B radiation influences embryo survival in R. arvalis, but has no effect on R. temporaria and B. bufo. Solar UV-B radiation had no effect on R. temporaria and R. arvalis tadpoles, but elimination of UV-B significantly increased survival of B. bufo tadpoles. It seems that ambient UV-radiation levels have no effect on R. temporaria but may affect R. arvalis and B. bufo at different developmental stages.  相似文献   

5.
Approximately 35 species representing 14 tree genera have been evaluated for responses to UV-B radiation in North America. The best representation has been in the conifers where some 20 species representing three genera have been studied. Overall, about 1/3 of these have demonstrated some deleterious response to UV-B. However, most negative impacts have been observed under controlled environment conditions where sensitivity may be enhanced. Therefore, it seems unlikely that expected levels of ozone depletion will result in direct losses in productivity. However, the role that ambient or enhanced levels of UV-B may play in forest ecosystem processes is more difficult to access. One possible indirect response of forests to changes in UV-B radiation levels could be via alterations in plant secondary metabolites. Increases in phenolics and flavonoids that enhance epidermal UV-screening effectiveness may also influence leaf development, water relations or ecosystem processes such as plant-herbivore interactions or decomposition.  相似文献   

6.
Effects of the ultraviolet-B radiation (UV-B) on conifers: a review   总被引:3,自引:0,他引:3  
The current knowledge on conifer responses to enhanced ultraviolet-B (UV-B) radiation is mainly based on greenhouse or growth chamber experiments of one growing season in duration. However, the biomass losses observed in greenhouses do not occur in field-grown trees in their natural habitats. Moreover, the majority of the 20 conifer species studied have been 1-year-old seedlings, and no studies have been undertaken on mature trees. Fully grown needles, with their glaucous waxy surfaces and thick epidermal cells with both soluble and wall-bound UV-B screening metabolites, are well protected against UV-B radiation. However, it is not known whether these are sufficient protectants in young emerging needles or during the early spring period of high UV-B levels reflected from snow. In order to understand all the mechanisms that result in the protection of conifer needles against UV-B radiation, future research should focus on the epidermal layer, separating the waxes, cuticle and epidermal and hypodermal cells. Parallel studies should consist of wall-bound and soluble secondary metabolite analysis, antioxidant measurements and microscopic observations.  相似文献   

7.
BACKGROUND: Previous studies have suggested that Ultraviolet B (UVB) radiation may play a role in amphibian population declines. Some of these studies also indicate that egg hatching success is unaltered in some species of anurans as a result of UVB exposure. It has been proposed that the egg mass jelly provides photoprotection to the developing embryos. METHODS: Direct spectrophotometric scans of egg jelly, scans of egg jelly methanol extracts, and experimental manipulation in a solar simulator during development were all used to assess the role of egg mass jelly as a photoprotective agent. RESULTS/DISCUSSION: For Hyla regilla, scans of egg jelly and methanolic extracts (for mycosporine-like amino acid content) both displayed no absorption in the UV range. Experimental manipulation (removal of egg mass jelly) with both Hyla regilla and Bufo canorus egg masses in a solar simulator demonstrated that egg mass jelly played no apparent role in photoprotection of either of these species. CONCLUSIONS: Based on the results in this study it seems unlikely that the egg jelly coat is playing a crucial role in protecting developing embryos from the impact of UVB radiation.  相似文献   

8.
Highland (altitude 1600 m above sea level) and lowland (altitude -2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

9.
Highland (altitude 1600 m above sea level) and lowland (altitude −2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

10.
Short- and long-term changes in the methanol-extractable UV-absorbing compounds and biomass of the pioneer moss Polytrichum juniperinum in response to natural and enhanced UV radiation were studied. Under natural conditions, the compounds were found to fluctuate seasonally. In summer these compounds correlated negatively with irradiation. The concentration was low in July after a period of simultaneous heat, drought and high irradiation. Transient positive correlation between daily concentration and UV was seen in June. The concentration increased towards autumn and was relatively high under snow. Two enhanced UV experiments were performed. Seasonality in the compounds was again observed, with negative correlations with irradiation. During the first weeks, a transient inhibition of compound production was observed after the daily UV-B treatment. After six years of modulated UV-treatment in situ, photosynthesising biomass decreased under UV-B and increased under UV-A. A larger variation in the UV-absorbing compounds was observed under UV-B treatment.  相似文献   

11.
A study was under taken, under controlled laboratory conditions, to investigate the influence of non-ionizing radiation (UV-B) and an organochlorine pesticide on the growth, photosynthetic pigments, protein content and DCPIP photoreduction of a cyanobacterium Nostoc carneum. Test algae was isolated from rice field soils of Sambalpur, Western Orissa, India and grown in nitrogen free BG 11 culture medium. Culture of algae from log phase of growth was treated with 5 ppm of the insecticide, Endodhan and UV-B (20 mW m−2) for 2 h daily, separately and in combination of insecticide and UV-B radiation. Algal samples treated with UV-B and pesticide separately showed distinct inhibitory effects on growth, pigments, protein content and DCPIP reduction of the test samples. However, when pesticide treated samples were subjected to UV-B exposure, the effect showed additive as well as synergetic effect. Experiment conducted to check the ability of the organism to recover from the stress, exposed for various time periods, suggest their ability to partially recover from the stress.  相似文献   

12.
The effects of long-term enhanced UV-B radiation on growth and secondary compounds of two conifer species were studied in an outdoor experiment. Scots pine (Pinus sylvestris) seedlings were exposed for two growing seasons and Norway spruce (Picea abies) seedlings for three growing seasons to supplemental UV-B radiation, corresponding to a 30% increase in ambient UV-B radiation. The experiment also included appropriate controls for ambient and increased UV-A radiation. Enhanced UV-B did not affect the growth of the conifer seedlings. In addition, neither the concentrations of terpenes and phenolics in the needles nor the concentrations of terpenes in the wood were affected. However, in the UV-A control treatment the concentrations of diterpenes in the wood of Scots pine decreased significantly compared to the ambient control. Apparently, a small increase in UV-B radiation has no significant effects on the secondary compounds and growth of Scots pine and Norway spruce seedlings.  相似文献   

13.
Polycyclic Aromatic Hydrocarbons’ (PAHs) toxicity is enhanced by the presence of ultraviolet radiation (UVR), which levels have arisen due to the thinning of the ozone layer. In this study, PAHs’ phototoxicity for natural marine phytoplankton was tested. Different concentrations of a mixture of 16 PAHs were added to natural phytoplankton communities from the Mediterranean Sea, Atlantic, Arctic and Southern Oceans and exposed to natural sunlight received in situ, including treatments where the UVR bands were removed. PAHs’ toxicity was observed for all the phytoplankton groups studied in all the waters and treatments tested, but only for the pico-sized group a synergetic effect of the mixture and UVR was observed (p = 0.009). When comparing phototoxicity in phytoplankton from oligotrophic and eutrophic waters, synergy was only observed at the oligotrophic communities (p = 0.02) where pico-sized phytoplankton dominated. The degree of sensitivity was related to the trophic degree, decreasing as Chlorophyll a concentration increased.  相似文献   

14.
Research has shown that some plants respond to enhanced UV-B radiation by producing smaller and thicker leaves, by increasing the thickness of epidermis and concentration of UV-B absorbing compounds of their surface layers and activation of the antioxidant defence system. The response of high-altitude plants to UV-B radiation in controlled conditions is often less pronounced compared to low-altitude plants, which shows that the alpine timberline plants are adapted to UV-B. These plants may have a simultaneous co-tolerance for several stress factors: acclimation or adaptation to the harsh climate can also increase tolerance to UV-B radiation, and vice versa. On the other hand, alpine timberline plants of northern latitudes may be less protected against increasing UV-B radiation than plants from more southern latitudes and higher elevations due to harsh conditions and weaker preadaptation resulting from lower UV-B radiation exposure. It is evident that more long-term experimental field research is needed in order to study the interaction of climate, soil and UV-B irradiance on the timberline plants.  相似文献   

15.
In the terrestrial environment, standardized protocols are available for measuring the exposure and effects of contaminants to invertebrates, but none currently exist for vertebrates. In an effort to address this, we proposed that developing lizard embryos may be used as a terrestrial vertebrate model. Lizard eggs may be particularly susceptible to soil contamination and in ovo exposure may affect hatchling size, mortality, as well as thyroid function. Toxicant-induced perturbations of thyroid function resulting from in ovo chemical exposure may result in toxicity during the critical perinatal period in reptiles. Fertilized Eastern fence lizard (Sceloporus undulatus) eggs were placed in cadmium (Cd)-spiked expanded perlite (0, 1.48, 14.8, 148, 1480, 14 800 μg Cd/g, nominal concentrations), artificially incubated at 28 °C, and examined daily for mortality. Whole lizard hatchlings as well as failed hatches were homogenized in ethanol and the homogenate was divided for Cd body residue analysis and thyroid hormone (triiodothyronine (T3) and thyroxine (T4)) analyses. Acute mortality was observed in the two highest doses (1480 and 14 800 μg Cd/g). Cadmium body residues showed a higher internal concentration with increasing exposure concentration indicating uptake of Cd. There was a decrease in T3:T4 ratio at the highest surviving dose (148 μg Cd/g), however, there were no differences observed in hatchling size measured as weight and snout-vent length, or in whole body thyroid hormone levels. In summary, this study has shown Cd amended to a solid phase representing soil (perlite) can traverse the thin, parchment-like shell membrane of the fence lizard egg and bioaccumulate in lizard embryos. We believe this study is a good first step in investigating and evaluating this species for use as a model.  相似文献   

16.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.  相似文献   

17.
Experimental results from plants receiving elevated doses of UV-B radiation generally show that Mediterranean forest species are well protected against increases in UV-B radiation. Natural adaptations to water stress and excess light (elevated concentrations of UV-B screening compounds, leaf hairs, thick cuticle and epidermis), and UV-B responses (thickening of the cuticle, increase in carotenoids) may avoid or counter-balance UV-B radiation damage. This response confirms that Mediterranean forest vegetation is adapted to face oxidative stress factors, such as elevated tropospheric ozone concentrations, drought and high radiation, including UV-B. Nevertheless, in the long term, species-specific and season-specific differential responses in growth, physiology, phenology and reproductive behaviour may alter the interactions between species and lead to slow but important changes in ecosystem structure and function.  相似文献   

18.
The projected doubling of current levels of atmospheric carbon dioxide concentration ([CO(2)]) during the next century along with increases in other radiatively active gases have led to predictions of increases in global air temperature and shifts in precipitation patterns. Additionally, stratospheric ozone depletion may result in increased ultraviolet-B (UV-B) radiation incident at the Earth's surface in some areas. Since these changes in the Earth's atmosphere may have profound effects on vegetation, the objectives of this paper are to summarize some of the recent research on plant responses to [CO(2)], temperature and UV-B radiation. Elevated [CO(2)] increases photosynthesis and usually results in increased biomass, and seed yield. The magnitude of these increases and the specific photosynthetic response depends on the plant species, and are strongly influenced by other environmental factors including temperature, light level, and the availability of water and nutrients. While elevated [CO(2)] reduces transpiration and increases photosynthetic water-use efficiency, increasing air temperature can result in greater water use, accelerated plant developmental rate, and shortened growth duration. Experiments on UV-B radiation exposure have demonstrated a wide range of photobiological responses among plants with decreases in photosynthesis and plant growth among more sensitive species. Although a few studies have addressed the interactive effects of [CO(2)] and temperature on plants, information on the effects of UV-B radiation at elevated [CO(2)] is scarce. Since [CO(2)], temperature and UV-B radiation may increase concurrently, more research is needed to determine plant responses to the interactive effects of these environmental variables.  相似文献   

19.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

20.
Species individualistic responses to warming and increased UV-B radiation are moderated by the responses of neighbors within communities, and trophic interactions within ecosystems. All of these responses lead to changes in ecosystem structure. Experimental manipulation of environmental factors expected to change at high latitudes showed that summer warming of tundra vegetation has generally led to smaller changes than fertilizer addition. Some of the factors manipulated have strong effects on the structure of Arctic ecosystems but the effects vary regionally, with the greatest response of plant and invertebrate communities being observed at the coldest locations. Arctic invertebrate communities are very likely to respond rapidly to warming whereas microbial biomass and nutrient stocks are more stable. Experimentally enhanced UV-B radiation altered the community composition of gram-negative bacteria and fungi, but not that of plants. Increased plant productivity due to warmer summers may dominate food-web dynamics. Trophic interactions of tundra and sub-Arctic forest plant-based food webs are centered on a few dominant animal species which often have cyclic population fluctuations that lead to extremely high peak abundances in some years. Population cycles of small rodents and insect defoliators such as the autumn moth affect the structure and diversity of tundra and forest-tundra vegetation and the viability of a number of specialist predators and parasites. Ice crusting in warmer winters is likely to reduce the accessibility of plant food to lemmings, while deep snow may protect them from snow-surface predators. In Fennoscandia, there is evidence already for a pronounced shift in small rodent community structure and dynamics that have resulted in a decline of predators that specialize in feeding on small rodents. Climate is also likely to alter the role of insect pests in the birch forest system: warmer winters may increase survival of eggs and expand the range of the insects. Insects that harass reindeer in the summer are also likely to become more widespread, abundant and active during warmer summers while refuges for reindeer/caribou on glaciers and late snow patches will probably disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号