首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The object of this study was to evaluate the acute toxicity of cadmium in different post-embryonic stages of the penaeid shrimp Penaeus japonicus (Bate, 1888) and to determine the effect of sublethal cadmium on the osmoregulatory capacity used as an indicator of physiological condition. Tolerance to cadmium increases with the developmental stage. The least tolerant stages are the nauplii (48 h LC50: 124 g Cd l-1) and the zoeae (96 h LC50: 10 to 30 g Cd l-1). The most tolerant stages are the postlarvae (96 h LC50: 200 to 3500 Cd l-1) and juveniles (96 h LC50: 5500 g Cd l-1). In juvenile shrimp, 2000 g Cd l-1 significantly reduce hypo- and hyper-OC. The effect of cadmium on hypo- and hyper-osmoregulatory capacity illustrates a dose- and time-dependent response. Surviving shrimp recover their hypo-osmoregulatory capacity after 6 d of readaptation in cadmium-free seawater.  相似文献   

2.
The possible modification of mercury toxicity by selenium in embryos of the Pacific oyster Crassostrea gigas and the larvae of the crab Cancer magister was investigated. Mercury concentration eliciting abnormal development in 50% of the oyster embryos (EC50) was 5.7 g l-1 (48 h) and mortality in 50% of the crab larvae (LC50) occurred with 6.6 g l-1 (96 h). The 48 h EC50 for selenium was greater than 10,000 g l-1 for oyster embryos and the 96 h LC50 for crab zoeae was 1040 g l-1. The response from each species, when exposed to both toxicants, revealed, that a high level of selenium (5,000 g l-1) increased mercury toxicity. Moderate selenium concentrations (10 to 1,000 g l-1) tended to decrease mercury toxicity, although no statistical verification could be made. The order of administration of toxicants had no effect on the response of Crassostrea gigas embryos. Early developmental stages (8 h) of C. gigas embryos were most sensitive to dissolved Hg; toxicant administration 24 h after fertilization resulted in no apparent abnormalities in development.  相似文献   

3.
Adult Elasmopus rapax, collected from the eastern coast of Venezuela in 1990, were exposed to seawater containing various CdCl2 concentrations ranging from 0.25 to 5.5 mol l-1. The 48-h and 96-h LC50 values obtained were 4.0 and 1.6 mol Cd l-1, respectively. In amphipods exposed to 1 mol Cd l-1 for up to 240 h, the apparent rate of cadmium uptake was higher in dead animals (most of which had molted during the preceding 24 to 48 h) than in those which survived throughout the treatments without molting. Thus, whole-body cadmium content reached 1.74 mol g-1 dry weight (dw) in the former and only 0.85 mol g-1 dw in the latter; the higher body Cd-load may have caused the increased mortality observed in molters. On exposure to cadmium levels above 0.5 mol l-1 the oxygen consumption rate of non-molters decreased from 2.2 to about 1.5 ml O2 g-1 dw h-1 over the first 24 h, remaining unchanged thereafter. The results place E. rapax among the most sensitive marine organisms yet studied concerning cadmium toxicity, and emphasize the usefulness of the Amphipoda as bioindicators and research tools for bioassays.  相似文献   

4.
Juveniles of the prawnPenaeus chinensis (3.96 ±0.18 cm, 0.36±0.06 g) reared in Taiwan in 1989 were exposed to different concentrations of ammonia and nitrite, by a static renewal method in 33 seawater at pH 7.94 and at 26 °C. The 24, 48, 96 and 120 h LC50 (median lethal concentration) of ammonia were 3.29, 2.10, 1.53 and 1.44 mg l–1 for NH3-N (un-ionized ammonia as nitrogen) and 79.97, 51.14, 37.00 and 35.09 mg l–1 for ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24, 96, 120, 144 and 192 h LC50 of nitrite-N were 339, 37.71, 29.18, 26.98 and 22.95 mg l–1. The LC50 decreased with increasing exposure time. During the first 96 h,P. chinesis juveniles were more susceptible to ammonia than nitrite. However, prawns were less tolerant to nitrite than ammonia when exposed for more than 96 h. The threshold was found at 120 and 192 h for ammonia and nitrite, respectively, on the toxicity curves. Incipient LC50 was 1.44 mg l–1 for NH3-N, 35.09 mg l–1 for ammonia-N and 22.95 mg l–1 for nitrite-N. The safe value forP. chinensis juveniles was 0.14, 3.51 and 2.30 mg l–1, respectively.  相似文献   

5.
Fecundity, egg viability and fecal pellet production are reported for Acartia clausi females collected in the Bay of Naples, Italy, from April to October 1992 and fed either with a diatom (Thalassiosira rotula) or dinoflagellate (Prorocentrum minimum) diet, at food saturated conditions. The diatom diet significantly reduced both egg and fecal pellet production as well as hatching success. Blockage of egg development occurred with both axenic and non-axenic cultures of T. rotula, suggesting that inhibitors were provided by the diatoms and not by the bacteria associated with diatom cultures. Low hatching success was also artificially induced by exposing newly spawned A. clausi eggs to high concentrations of diatom extracts, indicating the presence of deleterious, inhibitory compounds blocking copepod embryogenesis. Fecundity and hatching success diminished significantly with female age. In contrast, female longevity was not significantly modified by food type. The presence of males did not significantly alter fecundity or egg viability. Females continued to produce viable eggs throughout the period of incubation, with and without males, in both food conditions, indicating that remating is infrequent and not necessary to sustain viable egg production in this species. The succession in low and high population densities may therefore be the outcome of variations in survival rates of eggs, rather than reproductive protential perse; such variations may strongly depend on the adult copepod diet.  相似文献   

6.
Captan did not affect the survival of Dungeness crab (Cancer magister Dana) zoea exposed to 30 g l-1 during a chronic toxicity test lasting 69 days, but larvae were quickly killed (mean survival time = 9 days) in the same test by exposure to 450 g l-1 of the fungicide. Delay of molting occurred, however, for later stages at 30 g l-1. Survival of juvenile crabs was not reduced by exposure to captan for 36 days at 510 g l-1 or, in a second test, for 80 days at 290 g l-1. No deaths of adults exposed for 75 days to 340 g l-1 of captan were observed. Captan appeared to accelerate hatching of eggs at all concentrations tested from 100 to 10,000 g l-1. The development from prezoeae during a 24-h period was not inhibited by the fungicide, but at 3,300 and 10,00 g l-1, the two highest concentrations tested, developing zoeae exhibited a morphological deformity and were largely inactive. Under the prevailing conditions in the toxicity tests, the half-life of captan was estimated to be from 23 to 54 h. Because of the relatively low toxicity of captan to crab stages and its high rate of degradation in sewater, it is suggested that the agricultural application of captan near marine waters is not likely to affect natural crab populations or crabs in laboratory culture. Further-more, the prophylactic use of captan as a fungicidal treatment for Lagenidium sp. in larval crab cultures is considered safe when used at recommended dosages.Technical Paper No. 4131, Oregon Agricultural Experiment Station.  相似文献   

7.
In this study we demonstrate the sensitivity of swimming behavior and predator-escape responses of nauplii of the estuarine copepod Eurytemora affinis to sublethal doses of Cu and Cd. Behavior was generally altered at metal doses below those affecting growth rates or survival of the copepods. Swimming velocities of Cu-dosed nauplii were different from controls at all concentrations of Cu tested (10–50 g l-1 total Cu) after 24- to 48-h exposure, whereas development rate of nauplii was significantly reduced only after 96 h at 25 g l-1. The 96 h LC50 for Cu was approximately 30 g l-1 Cu. Naupliar swimming velocity was also affected by Cd. Swimming speeds were reduced after 24 h at 130 g l-1, and development was slowed after 48 h at 116 g Cd l-1. The 96-h LC50 was >120 g l-1. Little is known of the adaptive role of specific motile behaviors in the success of larval copepods. We investigated the relationship of swimming speed to predator — prey interactions of the nauplii using both real and simulated predators. Nauplii exposed to Cu for 24 h were observed to be generally hyperactive, a condition which could increase their encounter frequency with predators. Reduced numbers of escape responses of nauplii to a simulated predator, another indication of increased vulnerability to predation, were observed only after 48-h exposure to Cu. Nevertheless, feeding rates of non-dosed larval striped bass on dosed nauplii (24 h at 25 g Cu l-1) were significantly higher than on control nauplii. Feeding rates of larval mysid shrimp, however, were not higher on similarly dosed nauplii; 24 h exposure of nauplii to >30 g Cu l-1 did result in increased predation by mysids.Contribution No. 272 of the US EPA Environmental Research Laboratory, Narragansett, Rhode Island 02882, USA  相似文献   

8.
In Penaeus japonicus, the tolerance to ammonia increased with the development from nauplius to late juvenile. The 48-h LC50 of ammonia in nauplii (III–V), 96-h LC50 in zoeae (I–III), mysis (I–III), post-larvae (PL1) and late juveniles (10.4±1.1 g) were respectively 5.0, 6.1 to 8.1, 9.4 to 10.9, 15.5 and 52.7 mg Nl-1 (0.5, 0.6 to 0.7, 0.9, 1.3 and 3.1 mg NH3–Nl-1). In a chronic experiment (20 d), the LC50 in post-larvae (PL1) was 19.1 (1.4) at 96 h and 16.2 mg Nl-1 (1.3 mg NH3–Nl-1) at 480 h. Osmoregulatory capacity (OC) was calculated as the osmotic gradient between the hemolymph and the external medium at given salinities. The effects of ammonia on OC, Na+ and Cl- regulation and gill Na+–K+ ATPase activity in late juveniles were examined in fullstrength seawater, SW (1050 mosm kg-1, 36 S) and in dilute SW (450 mosm kg-1, 15%.), after 48 or 96 h exposure to various concentrations of ammonia. Ambient ammonia disrupted both hypo- and hyper-osmoregulation; decreased OC resulted from impaired Na+ and Cl- regulation. Gill Na+–K+ ATPase activity increased in SW and was not affected in dilute SW. The decrease of OC was ammonia-dose-dependent. The threshold ammonia concentrations affecting hypo-OC and hyper-OC were, respectively, 16 (1.3) and 32 mg Nl-1 (2.3 NH3–Nl-1) for a 48 h exposure; these concentrations were lower than the 48-h LC50 value, 65.3 mg Nl-1 (3.5 NH3–Nl-1). The time course of exposure to sublethal ammonia (48 mg Nl-1) demonstrated that the effect on osmoregulation was time-dependent. This effect was also temporary, and the exposed shrimps recovered control OC values after removal of excessive ambient ammonia. The possibility of using OC as an indicator of physiological condition in osmoregulating crustaceans and the acting mode of ammonia on osmotic and ionic regulation are discussed.  相似文献   

9.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

10.
Ahsanullah  M.  Negilski  D. S.  Mobley  M. C. 《Marine Biology》1981,64(3):299-304
The acute toxicity of zinc, cadmium and copper to Callianassa australiensis (Dana) was evaluated in static tests. Each test lasted up to 14 d and LC50 values were calculated for 4, 7, 10 and 14 d intervals. The toxicity of each metal increased with exposure time; thus the 4 d LC50 values of 10.20, 6.33 and 1.03 mg l-1 were considerably higher than the 14 d LC50 values of 1.15, 0.49 and 0.19 mg l-1 for zinc, cadmium and copper respectively. Toxicity curves reveal that none of the values were asymptotic, indicating that median lethal threshold concentrations were not reached for any of the metals. This suggests that 14 d is an insufficient time in which to complete meaningful, acute lethality tests for marine shrimps. Longer tests are necessary if lethal threshold concentrations are to be used with application factors to derive safe concentrations for the protection of C. australiensis.  相似文献   

11.
The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentration of 70 g l-1, but their feeding behavior was altered both quantitatively and qualitatively at a concentration of 250 g l-1. Three types of response to the higher oil level were found. The first was total suppression of feeding. Both other types involved suppression of feeding on particles between 7 and 15 m diameter, but one showed no change in the ingestion of larger particles, whereas the other displayed increased feeding on particles larger than 15 m diameter. These results suggest that the species of Acartia studied use three different modes of feeding, each on a different size range of particulate material. Low-level hydrocarbon pollution affects each feeding mode differently.Contribution No. 973, Center for Environmental and Estuarine Studies of the University of Maryland  相似文献   

12.
Acute toxicity of ammonia was determined for cultured larval, postlarval, and wild adult lobsters (Homarus americanus) in 1988. Ammonia tolerance was found to increase with ontogenetic development. Based on 96-h LC50 values of 58 mg l–1 NH4 + + NH3 l–1 seawater (0.72 mg NH3 l–1) for Stage I larvae, 87 mg NH4 + + NH3 l–1 (1.7 mg NH3 l–1) for Stage II larvae, 125 mg NH4 + + NH3 l–1 (2.13 mg NH3) for Stage III larvae, 144 mg NH4 + + NH3 l–1 (2.36 mg NH3 l–1) for Stage IV postlarvae, 377 mg NH4 + + NH3 l–1 (5.12 mg NH3 l–1) for adult lobsters at 5°C and 219 mg NH4 + + NH3 l–1 (3.25 mg NH3 l–1) for adult lobsters at 20°C, recommendations for safe levels of total ammonia and un-ionized ammonia were calculated using an application factor of 0.1. Effects of ammonia on osmoregulatory capacity were studied on postlarvae and adults. Ability of postlarvae and adults to hyper-regulate in low-salinity media decreased after exposure to ammonia. In postlarval lobsters, osmoregulatory capacity was significantly affected in ammonia concentrations exceeding 32 mg l–1. Osmoregulatory capacity in adult lobsters (5 and 20°C) was affected at 150 mg l–1. In postlarval lobsters, a minimum exposure time of 12 h was required to impair osmoregulatory capacity. The decrease in hemolymph osmotic pressure was caused by lower hemolymph sodium concentrations. The presence of ammonia in the external medium could markedly affect the Na+/NH4 + transport mechanism by permanently, temporarily, or partially impairing the transport sites for sodium.  相似文献   

13.
Eggs and larvae of the winter flounder Pseudopleuronectes americanus Walbaum were hatched and raised in the laboratory under controlled conditions. Biochemical composition was measured during development and found to be similar to that of other species: 65 to 80 percent protein, 15 to 30 percent fat, and 0 to 5 percent carbohydrate. Ash content was 7 to 10 percent of dry weight. The chorion comprised more than half of the weight of an egg and the data suggested that it was possibly a source of nutrition to the developing embryo. The sequence of utilization appeared to be carbohydrate and then protein to hatching, lipid, mixed lipid and protein, the predominantly protein until feeding began. Carbohydrate was accumulated at first feeding and depleted when growth began. Protein and lipid were deposited in approximately constant proportions. Respiration rates of eggs were low, 0.002–0.015 l O2 egg-1 h-1, but rose gradually from fertilization to hatching. Respiration rates of early larvae were from two to eight times that of eggs (0.033–0.131 l O2 larva-1 h-1). Variation in larval respiration rates indicated a three-fold difference in rate according to level of activity. Eggs excreted ammonia at an increasing rate from fertilization to hatching. Larvae excreted ammonia, primary amines, and other unidentified organic nitrogenous substances. Rates of excretion and proportions of excretory products varied with stage of development. Primary amine excretion was variable and a major component in early stages. Ammonia-N excreted was two to 20 times primary amine N excreted. Unidentified substances were the predominant form of N excretion during early feeding. Ammonia accounted for most of the N excreted in older larvae. Early specific growth rates were 2.1 and 5.5%. Net caloric conversion and net and gross nitrogen efficiencies were low in first feeding larvae compared to adult fishes (32.2, 27.7, and 10.7% respectively).Contribution no. 5071 from the Woods Hole Oceanographic Institution  相似文献   

14.
The chlorinated hydrocarbon pesticide Kelthane was assayed for effects on food consumption, molting rate, cannibalism, respiration, mortality and behavior of the estuarine shrimp Crangon franciscorum Stimpson. The test system was a single-pass pulse-flow apparatus employing a modified Mount-Brungs style diluter. Treatment levels were 0, 14, 33 and 81 g l-1 Kelthane at 16.6°C and 19 S over an exposure period of 317 h. Exposure to Kelthane reduced food consumption, molting rate, cannibalism, and respiration. Behavior also was abnormal in exposed shrimp. They spent more time swimming, were less coordinated and had feeble escape reactions. Kelthane was very toxic to C. franciscorum with LT50 values of 163, 196 and 264 h for shrimp exposed to 81, 33 and 14 g l-1 respectively. The incipient lethal level of Kelthane is probably below 14 g l-1.  相似文献   

15.
Experiments were conducted to develop a sensitive sublethal toxicity test protocol to determine the toxicity of municipal wastewater effluents to larvae of the red abalone Haliotis rufescens. In multiple tests, fertilized abalone embryos were exposed for 48 h to dilutions of a reference toxicant, zinc sulfate, and to dilutions of primary-and secondary-treated effluents. The resulting veliger larvae were examined microscopically for larval shell abnormalities. In a longer flowthrough experiment, abalone were exposed for the entire larval phase, from the two-cell stage through metamorphosis, to compare zinc effects on metamorphosis with zinc effects on short-term larval shell development. Dissolved oxygen, pH, salinity and temperature were measured daily in test solutions, and zinc concentrations were verified by chemical analysis. No observed effect concentrations (NOECs) for zinc were 39±2.1 g l-1 in three 48 h exposures, and 19 g l-1 for the 9 d exposure through metamorphosis. Median effect concentrations (EC50s) were 68±6.9 g l-1 in 48 h tests and 50 g l-1 in the 9 d test. Abalone larvae were affected at lower concentrations of primary than of secondary effluent.  相似文献   

16.
The acute effects of combined exposure to temperature increase and chlorination on a neritic marine copepod, Acartia omorii Bradford (collected offshore of Onjuku, Japan in 1982), were investigated in the laboratory. Continuous flow exposure and batch exposure modes were compared. Based on the results of continuous flow experiments, the 24-h median lethal concentration (24-h LC50, in mg l-1) of total residual chlorine was estimated using the multiple regression equation below, with a multiple correlation coefficient of 0.955: 24-h LC50=2.988-0.034 dT-1.611 log10 t where dT is temperature rise (°C) and t is exposure duration (min). In batch experiments, the predictive power of the multiple regression equation was reduced, probably due to variations in chlorine concentration during exposure duration.  相似文献   

17.
H. Onken  D. Siebers 《Marine Biology》1992,114(3):385-390
Single split lamella preparations of posterior gills of low-salt adapted shore crabs Carcinus maenas (collected from the Kiel Bay, Baltic Sea in 1991) were mounted in a micro Ussing-chamber. With NaCl salines on both sides we found an outside positive potential difference (PD) of 6.6±1.3 mV, a short-circuit current (Isc) of-240±65 Acm-2 and a resistance (Rt) of 25±3 cm2 (n=8). Substitution of Cl- (gluconate) on both sides of the preparation resulted in a decrease of Isc by more than 90% at constant Rt. Isc disappeared and Rt increased after substitution of Na+ (choline). When ouabain (2 mmol l-1) was applied to the internal NaCl-saline, Isc decreased and Rt remained unchanged. Internal addition of 0.1 mmol l-1 acetazolamide left Isc and Rt unaffected. Application of amiloride to the external NaCl saline resulted in a increase of both inward negative Isc and Rt. The dose dependence of the diuretic showed a maximal effect between 50 and 200 mol l-1 with a half-maximal blocker concentration (KAMI) of ca. 10 mol l-1. The results show that the split lamella preparation of posterior gills of C. maenas is a low resistance epithelium which is able to effect a massive, electrogenic and coupled absorption of Na+ and Cl-.  相似文献   

18.
Adult Sepia officinalis L. were caught in June 1984, in the coastal waters of Wimereux (France). Deposition of the eggs took place in the seawater aquaria of the Station Marine. The oxygen consumption of S. officinalis was measured during embryonic and juvenile development. Aerobic metabolism occurs as soon as the early embryonic Stage 21. Oxygen diffuses through the initially thick egg shell; the oxygen level in the perivitelline liquid reaches a maximal value just before hatching (116.7±6.9 mm Hg). Hatchings display only a slight increase in oxygen consumption compared to embryos in the last stage of development. Respiration experiments with 40 d old juveniles showed that oxygen consumption increases with temperature, but is not affected by photoperiod. Experiments under increasing hypoxia revealed that S. officinalis juveniles are good regulators and maintain a constant oxygen consumption in the range of 4 to 7 mg O2l-1. Juveniles successfully recover from an hypoxic stress of 2 mg O2l-1 maintained for 1 h. This suggests that the respiratory pigments (pre-hemocyanins) of 40 d-old juveniles have a high oxygen affinity and/or that these juveniles have the ability to adapt to anaerobic conditions.  相似文献   

19.
Life table estimates of intrinsic rate of natural increase (r) were used to assess chronic toxicity of Kepone to the copepod Eurytemora affinis (Poppe). The acute toxicity (48-h LC 50) was determined to be 40g 1-1 (95% CL 33.9–47.2). A reduction in r was observed at all concentrations above 5 g 1-1, and r was near zero at 20 g 1-1. This was due to the combination of lowered survivorship, delayed onset of reproduction and reduced fecundity. We discuss the value of the life table approach both as an experimental protocol and an ecologically realistic bioassay of chronic effects, and document that as few as 21 d are sufficient as an adequate test duration.  相似文献   

20.
Feeding, respiration and growth rates of oyster (Ostrea edulis L.) larvae reared at five food levels were measured throughout the entire larval period. Energy budgets were derived as a function of alga (Isochrysis galbana Parke) food concentration. Ingestion rate (IR, cells h-1) and oxygen consumption rate ( , nl h-1) were almost isometric functions of larval size [ash-free dry weight, (AFDW, g)], characterized by the equations: IR=803.9 AFDW1.13 and =4.85 AFDW1.09. Ingested ration was directly correlated to cell concentration up to a maximum at 200 cells l-1, with further increases failing to support higher ingestion rates. Likewise, growth rate linearly increased with food ration up to 100 cells l-1 (max. growth efficiency,K 1=25%) and reached a maximum at 200 cells l-1 (growth rate=5.6 m d-1), with further increases in food not supporting significantly faster growth. Maintenance ration was 2 to 3% daily dry weight (DW); optimum ration increased during larval development from 5 to 20% DW; maximum ration was 20% DW. During larval rearing, an increasing feeding schedule of 50, 100 and 200 cells l-1 from Days 0, 5 and 10, respectively, is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号