首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process   总被引:1,自引:1,他引:0  
The photocatalytic degradation of a dye derivative, C.I. disperse blue 1 (1), has been investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. The degradation was studied by monitoring the change in substrate concentration employing UV spectroscopic technique as a function of irradiation time. The degradation was studied under different conditions such as different types of TiO2, reaction pH, catalyst and substrate concentration containing hydrogen peroxide (H2O2), besides molecular oxygen in the presence of TiO2. The degradation of dye was also investigated under sunlight and the efficiency of degradation was compared with that of the artificial light source. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient for the degradation of the dye.  相似文献   

2.
Heterogeneous photocatalysed degradation of a herbicide derivative, N-(4-isopropylphenyl)-N',N'-dimethylurea (Isoproturon, 1) was investigated in aqueous suspensions of titanium dioxide by monitoring the change in absorption intensity and depletion in Total Organic Carbon content as a function of irradiation time. The degradation kinetics was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO(2) and in the presence of electron acceptors such as hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)) and potassium persulphate (K(2)S(2)O(8)) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst Degussa P25 was found to be more efficient as compared with other photocatalysts. An attempt was made to identify the degradation product through GC-MS analysis technique.  相似文献   

3.
Accurate input data for leaching models are expensive and difficult to obtain which may lead to the use of "general" non-site-specific input data. This study investigated the effect of using different quality data on model outputs. Three models of varying complexity, GLEAMS, LEACHM, and HYDRUS-2D, were used to simulate pesticide leaching at a field trial near Hamilton, New Zealand, on an allophanic silt loam using input data of varying quality. Each model was run for four different pesticides (hexazinone, procymidone, picloram and triclopyr); three different sets of pesticide sorption and degradation parameters (i.e., site optimized, laboratory derived, and sourced from the USDA Pesticide Properties Database); and three different sets of soil physical data of varying quality (i.e., site specific, regional database, and particle size distribution data). We found that the selection of site-optimized pesticide sorption (Koc) and degradation parameters (half-life), compared to the use of more general database derived values, had significantly more impact than the quality of the soil input data used, but interestingly also more impact than the choice of the models. Models run with pesticide sorption and degradation parameters derived from observed solute concentrations data provided simulation outputs with goodness-of-fit values closest to optimum, followed by laboratory-derived parameters, with the USDA parameters providing the least accurate simulations. In general, when using pesticide sorption and degradation parameters optimized from site solute concentrations, the more complex models (LEACHM and HYDRUS-2D) were more accurate. However, when using USDA database derived parameters, all models performed about equally.  相似文献   

4.
Process-based models are frequently used to assess the water quality impacts of turfgrass management emanating from proposed or existing golf courses. Thatch complicates the prediction of pesticide transport because surface-applied pesticides must pass through an organic-rich layer before entering the soil. This study was conducted to (i) compare the use of a linear equilibrium model (LEM) and two-site nonequilibrium (2SNE) model to predict pesticide transport through soil and thatch + soil columns, and (ii) evaluate thatch effects on pesticide transport through soil columns with a volume-averaging approach. Pesticide breakthrough curves were obtained for soil and thatch + soil columns from a 1 cm h(-1) flux applied one day after applying triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and carbaryl (1-napthyl-methyl carbamate). Pesticide and bromide transport parameters indicated that nonequilibrium processes were affecting pesticide transport. Columns containing zoysiagrass (Zoysia japonica Steud.) thatch had lower triclopyr and carbaryl leaching losses than did soil-only columns, although total reductions attributable to thatch did not exceed 15% of the applied pesticide. When laboratory-based retardation factors were used, the 2SNE model explained 88 to 93% of the variability for triclopyr and 70 to 94% of the variability for carbaryl. Laboratory-based retardation factors performed well in a 2SNE model to predict the peak concentration and tailing behavior of triclopyr and carbaryl with a volume-averaging approach. These results suggest that separate representation of the thatch layer in process-based models is not a prerequisite to obtain reasonable estimates of pesticide transport under steady state flow conditions.  相似文献   

5.
Lignocellulosic materials are used as substrate for the cultivation of the edible mushroom Pleurotus pulmonarius. After two or three flushes of mushrooms, the spent substrate is discarded although it still has an important enzymatic activity that can be used for several purposes. In this study, we sought to determine the technical feasibility of using spent substrate from P. pulmonarius to degrade chlorothalonil. Reaction mixture was prepared with 6 ml of pesticide aqueous solution (2 mg active ingredient/l) and 3 ml of enzymatic extract obtained from spent P. pulmonarius substrate. The enzymatic reaction (27 °C, pH 7.4) was conducted for 1 h with sampling at 15 min intervals. The effect of storage time and temperature (freezing or refrigerating) of spent substrate and enzymatic extract, respectively, on the activity over chlorothalonil was determined. Freshly obtained spent substrate extract was able to reduce 100% of the initial concentration of chlorothalonil (2 mg/l) after 45 min of reaction. Storage time had a negative effect on the stability of the enzymatic activity: with spent substrate stored for a week, chlorothalonil concentration was reduced in 49.5% after 1 h reaction and with substrate stored for two and three weeks, the degradation efficiency decreased to 9.15% and 0%, respectively. Cooling and freezing the spent substrate extract also had a negative effect on chlorothalonil degradation.  相似文献   

6.
光催化氧化苯酚中间产物的分析与降解途径探讨   总被引:4,自引:0,他引:4  
采用光催化氧化法降解苯酚溶液,利用液相色谱对苯酚及其中间产物进行了定性、定量分析。考察了投加H2O2对中间产物浓度变化的影响。根据中间产物的产生情况及浓度变化,推测了苯酚光催化降解的反应途径。  相似文献   

7.
The breakpoint rainfall hydrology and pesticide options of the field scale model CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) were used to predict average concentrations of hexazinone [3 cyclohexyl-6-(dimethyl-amino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] in stormflow from four forested watersheds in the upper Piedmont region of Georgia. Predicted concentrations were compared with measured concentrations recorded over a 13-month period. CREAMS accurately predicted hexazinone concetrations in the initial stormflow events which also contained the highest concentrations. The model underestimated the hexazinone concentrations in stormflow two months and greater following pesticide application. In a companion study, the daily rainfall option of the CREAMS model was used to evaluate the reltive risk associated with the maximum expected concentration of hexazinone, bromacil (5-bromo-3 sec-butyl-6 methyuracil), picloram (4-amino-3,5,6 trichloropicolinic acid), dicamba (3,6-dichloro-0-anisic acid), and triclopyr {[(3,5,6-trichloro-2-pyridinyl)oxy] acetic acid} in stormflow from small forested watersheds. The model predicted the following order of potential residue appearance in stormflow: bromacil>triclopyr>hexazinone>picloram>dicamba. Subsurface movement of residues via interflow and deep leaching losses are not simulated by the version of CREAMS used in these studies.  相似文献   

8.
In the present work, degradation of rhodamine B, a typical dye effluent commonly observed in chemical processing wastewaters has been investigated using a sonochemical reactor with capacity of 7 L. The reactor consists of an ultrasonic bath equipped with a single large transducer having longitudinal vibrations with operating frequency of 25 kHz and rated power output of 1 kW. The effect of operational conditions such as the rhodamine B initial concentration, operating pH and use of additives such as H(2)O(2), CCl(4) and TiO(2) has been investigated initially. A mathematical model has also been fitted to estimate the rate constant for rhodamine B removal under different operating conditions. Intensification studies have been carried by combining sonochemical oxidation with photocatalytic oxidation under optimized conditions. In all the investigated systems, complete removal of rhodamine B (10 ppm initial concentration) was obtained using a combination of sonochemical reactor and CCl(4). Sonocatalysis (in the presence of TiO(2)) of rhodamine B showed 92% degradation, while sonophotocatalysis gave degradation of 93%. TOC analysis at various optimum conditions was also performed to quantify the extent of mineralization and it was observed that the extent of mineralization is always lower than the extent of removal of parent compound.  相似文献   

9.
Parathion is an insecticide of a group of highly toxic organophosphorus compounds. To investigate the dissipation and toxicological impact of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite, paraoxon, soil laboratory experiments were conducted in columns during a 19-d experiment under variably saturated conditions. Water and pesticide transport, sorption, and biodegradation of parathion were measured in three soil pools (soluble phase, weakly and strongly sorbed phases) using C-labeled pesticide. The effects of parathion and its metabolite on the mobility of soil nematodes were observed and then modeled with an effective variable, which combined pesticide concentration and time of application. Results showed that parathion was highly sorbed and slowly degraded to a mixture of metabolites. The parent compound and its metabolites remained located in the top 0.06-m soil layer. A kinetic model describing the sorption, biodegradation, and allocation into different soil pools of parathion and its metabolites was coupled with heat and water transport equations to predict the fate of parathion in soil. Simulated results were in agreement with experimental data, showing that the products remained in the upper soil layers even in the case of long-term (11-mo) simulation. The strongly sorbed fraction may be regarded as a pesticide reservoir that regularly provides pesticide to the weakly sorbed phase, and then, liquid phase, respectively. From both modeling and observations, no major toxicological damage of parathion and paraoxon to soil nematodes was found, although some effects on nematodes were possible, but at the soil surface only (0.01- and 0.02-m depth).  相似文献   

10.
UV-H_2O_2联用工艺去除水中阿特拉津的研究   总被引:2,自引:0,他引:2  
采用间歇式反应器考察了UV-H2O2高级氧化技术去除水中阿特拉津的效果及其影响因素,并进行了相关的反应动力学研究。结果表明,在pH值6.9,阿特拉津初始浓度500μg/L,紫外辐照强度172μW/cm2时,H2O2投加量50mg/L,反应10min后,阿特拉津的去除率90%。UV-H2O2联用工艺对阿特拉津的降解符合一级反应动力学。H2O2在该联用工艺降解阿特拉津中具有双重作用,一方面,当H2O2投加量较小时,一级反应速率常数随H2O2投加量的增加基本呈现线性增加的趋势;另一方面,当H2O2浓度增加到一定程度(90mg/L)后,阿特拉津的降解速率随H2O2浓度的变化已不明显,而H2O2浓度为102mg/L时,则出现了抑制作用。  相似文献   

11.
The rates of Diuron elimination by some advanced oxidation processes (AOPs) such as Fe(III)/UV, Ferrioxalate/UV, Fe(III)/H(2)O(2)/UV, Ferrioxalate/UV/H(2)O(2) and Fe(III)/H(2)O(2) have been compared. Experiments have been conducted at pH=2.3+/-0.1 with a batch reactor equipped with a low-pressure mercury lamp emitting mainly at 253.7nm. Data obtained under the following experimental conditions ([H(2)O(2)](0)=10(-3)M, [Diuron](0)=5x10(-5)M and [Fe(III)](0)=10(-3)M) have shown that rates of Diuron oxidation were higher with the systems Fe(III)/H(2)O(2)/UV and Ferrioxalate/UV/H(2)O(2) than with Fe(III)/UV and Fe(III)/H(2)O(2). On the other hand, Fe(III)/UV was found to be very efficient in mineralization of Diuron solution in comparison to direct UV photolysis. The experimental results showed that radical ()OH is the major pathway in the process of Diuron degradation.  相似文献   

12.
The growth properties and biodegradation mechanism of a Gram-negative bacterium, Pseudomonas nitroreducens TX1 that was able to grow on branched octylphenol polyethoxylates (OPEO(n), average n=9.5) as the sole carbon source over a wide concentration range (1-100,000 mgl(-1)) were studied. Analysis of growth factors indicated the highest specific growth rate (micro) of 0.53 h(-1) was obtained at an initial concentration of 5,000 mgl(-1) OPEO(n). An optimal C/N ratio of 12 was obtained for (NH(4))(2)SO(4) as the nitrogen source in a cultivated medium at pH 7. The kinetic analysis demonstrated that bacterial growth and OPEO(n) degradation followed the Monod equation and were based on a substrate concentration inhibition model and pseudo-first-order reaction, respectively. The substrate inhibition coefficient was over 18,000 mgl(-1) and this indicates that the strain has an ability to sustain growth at high concentrations of OPEO(n) and use it as the sole carbon source under such a stress condition. Furthermore, LC-MS analysis showed that the biodegradation mechanism of dodecyl octaethoxylate (AEO8) by P. nitroreducens TX1 was the sequential cleavage of the ethoxylate chain.  相似文献   

13.
Siderite (FeCO3) is commonly found in coal overburden and, when present, can cause interference in the determination of neutralization potential (NP). Under acidic testing conditions, FeCO3 reacts to neutralize acid, which contributes to the NP. However, continued weathering of FeCO3 (oxidation of Fe2+ and hydrolysis of Fe3+) produces a neutral to slightly acidic solution. The effects of hydrogen peroxide (H2O2), potassium permanganate (KMnO4), and O2 on the laboratory measurement of NP of siderite samples taken from overburden were examined. All oxidation treatments lowered the NP values of the siderite samples as compared with the standard USEPA method. However, oxidation with H2O2 produced variable results depending on the amount of H2O2 added. Neutralization potential values obtained after oxidation treatments were highly correlated with Mn concentration. Reaction products (i.e., 2-line ferrihydrite) of siderite samples with H2O2 and KMnO4 were not representative of natural siderite weathering. Oxidation with O2 produced the lowest NP values for siderite samples. The reaction products produced by oxidation with O2 most closely represent those intermediate products formed when siderite is exposed to atmospheric weathering conditions. Oxidation with O2 also proved to be the most reproducible method for accurately assessing NP when siderite is present in overburden samples.  相似文献   

14.
In the 1960s at Porri?o, Spain, soil from a pesticide factory dump was placed in an uncontrolled land infill during demolition. Since then, organochlorine pesticides have degraded and migrated from their original location. Concentrations of lindane, DDT, dicofol, and related side products or degradation products were determined at depths of 0 to 20, 20 to 60 and 60 to 100 cm along a 300-m transect running between the land infill and a nearby river. Depthwise nonmonotonicities (lowest concentrations of DDT and dicofol were found in the 20- to 60-cm layer) were attributed to the occurrence of several successive spill episodes; in general, concentrations were highest or near-highest in the 0- to 20-cm layer. At the dump site, the analyte contents of the 0- to 20-cm layer were as follows: alpha-hexachlorocyclohexane (alpha-HCH), 25 mg kg-1; beta-HCH, 15 mg kg-1; gamma-HCH (lindane), 1.3 mg kg-1; delta-HCH, 0.5 mg kg-1; DDT, 2.5 mg kg-1; dicofol, 0.05 mg kg-1; DDD+DDE, 2.2 mg kg-1. The alpha-HCH/gamma-HCH ratio was higher than in commercial products, and the DDT/(DDD + DDE) ratio lower, suggesting the degradation of lindane and DDT with time. In general, the concentrations of HCH isomers, DDT, and dicofol fell with increasing distance from the dump site; in particular, the rapid fall in HCH concentrations illustrates the marked immobility of these species in the soil. By contrast, the combined concentration of the DDT degradation products DDD and DDE rose with distance from the dump site, which is attributed to their higher mobility.  相似文献   

15.
In this study, the photo-Fenton process for the degradation of formaldehyde was investigated in lab-scale experiments. Results showed that methanol, the additive chemical in a commercial product of formaldehyde, was also decomposed during the formaldehyde oxidation reaction. The oxidation reaction was in three-stages. The first stage was the Fe(2+)/H(2)O(2) reaction in which both formaldehyde and methanol were swiftly decomposed. The second and the third stages exerted a somewhat less rapid degradation of both chemicals. The first stage of the oxidation reaction can be discussed by means of the initial average rate and the third stage or Fe(3+)/H(2)O(2) stage was found to follow the first order reaction rate. The reaction was influenced by the initial pH, the concentration of hydrogen peroxide, the amount of ferrous ions. The initial pH at 2.6 provided the highest removal efficiencies in this system. In addition, the competition between formaldehyde and methanol was investigated and described as r(m)/r(f), where r(m) and r(f) were the initial rates of methanol and formaldehyde, respectively. The addition of methanol exhibited a competitive effect on formaldehyde degradation. The removal of formaldehyde decreased with increasing methanol concentration. At the high concentrations of methanol, the oxidation reaction of formaldehyde was repressed. It appears that all values of r(m)/r(f) obtained from the experiments are lower than the theoretical values.  相似文献   

16.
A lignocellulosic substrate (LS) obtained from our local agroindustry was used as a low-cost and effective adsorbent for the removal of pesticides from wastewaters. The studied pesticides were terbumeton (N-(1,1-dimethyl)-Nethyl-6-methoxy-1,3,5-triazine-2,4-diamine), desethyl terbumeton (N-(1,1-dimethylethyl)-6-methoxy-1,3,5-triazine-2,4-diamine), dimetomorph (4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), and isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea). Batch and column experiments were conducted as a function of pH and pesticide concentration under laboratory and industrial conditions. The concentration range studied for the pesticides varied from 2 x 10(-7) to 3 x 10(-4) mol L(-1). The influence of organic and inorganic pollutants was assessed by studying the retention of pesticide in the presence of copper(II) and a surfactant. These experiments indicated that LS is an efficient adsorbent toward the investigated pesticides and has little influence of the other pollutants. The kinetic adsorptions are fast, and the amounts of adsorbed pesticide varied from 1 to 8 g kg(-1) of LS. These retention capacities show that LS can provide a simple, effective, and cheap method for removing pesticides from contaminated waters. Thus, this biomaterial may be useful for cleaning up polluted waters.  相似文献   

17.
Pesticides can volatilize into the atmosphere, which affects the air quality. The ability to predict pesticide volatilization is an essential tool for human risk and environmental assessment. Even though there are several mathematical models to assess and predict the fate of pesticides in different compartments of the environment, there is no reliable model to predict volatilization. The objectives of this study were to evaluate pesticide volatilization under agricultural conditions using malathion [ O,O-dimethyl-S-(1,2-dicarbethoxyethyl)-dithiophosphate], ethoprophos (O-ethyl S,S-dipropylphosphorodithioate), and procymidone [N-(3,5-dichlorophenyl)-1,2-dimethylcyclopropane-1,2-dicarboximide] as test compounds and to evaluate the ability of the Pesticide Leaching Model (PELMO) to calculate the predicted environmental concentrations of pesticides in air under field conditions. The volatilization rate of procymidone, malathion, and ethoprophos was determined in a field study during two different periods (December 1998 and September 1999) using the Theoretical Profile Shape (TPS) method. The experiments were performed on bare silty soil in the Bologna province, Italy. Residues in the air were continuously monitored for 2 to 3 wk after the pesticide applications. The amount of pesticide volatilized was 16, 5, and 11% in December 1998 and 41, 23, and 19% in September 1999 for procymidone, malathion, and ethoprophos, respectively. In both these experiments, the PELMO simulations of the concentration of ethoprophos and procymidone were in good agreement with the measured data (factor +/- 1.1 on average). The volatilization of malathion was underestimated by a factor of 30 on average. These results suggest that volatilization described by PELMO may be reliable for volatile substances, but PELMO may underpredict volatilization for less-volatile substances.  相似文献   

18.
Pesticides applied to agricultural soils are subject to environmental concerns because leaching to groundwater reservoirs and aquatic habitats may occur. Knowledge of field variation of pesticide-related parameters is required to evaluate the vulnerability of pesticide leaching. The mineralization and sorption of the pesticides glyphosate and metribuzin and the pesticide degradation product triazinamin in a field were measured and compared with the field-scale variation of geochemical and microbiological parameters. We focused on the soil parameters clay and organic carbon (C) content and on soil respiratory and enzymatic processes and microbial biomass. These parameters were measured in soil samples taken at two depths (Ap and Bs horizon) in 51 sampling points from a 4-ha agricultural fine sandy soil field. The results indicated that the spatial variation of the soil parameters, and in particular the content of organic C, had a major influence on the variability of the microbial parameters and on sorption and pesticide mineralization in the soil. For glyphosate, with a co-metabolic pathway for degradation, the mineralization was increased in soils with high microbial activity. The spatial variability, expressed as the CV, was about five times higher in the Bs horizon than in the Ap horizon, and the local-scale variation within 100 m(2) areas were two to three times lower than the field-scale variation within the entire field of about 4 ha.  相似文献   

19.
The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) < or =5 mg/L; COD(o)=200 mg/L; DOC(o) (dissolved organic carbon)=58 mg/L; AOX(o) (adsorbable organic halogens)=48 mg/L; LC(50,o) (lethal concentration causing 50% death or immobilization in Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was complete after 20 min ozonation (267 mg O(3)). On the other hand, for complete detoxification, ozonation had to be continued for at least 30 min (corresponding to 400mg O(3)). Effective AOX and acute toxicity removal was also obtained after heterogeneous photocatalytic treatment (TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)). The Fenton-based treatment experiments and particularly the dark Fenton reaction resulted in relatively poor degradation, dearomatization, AOX and acute toxicity removals.  相似文献   

20.
Determination of sorption of hydrophilic, weakly sorbing organic compounds in soil by conventional batch methods using a slurried suspension is often prone to considerable errors because small changes in the solution concentration on equilibration must be accurately determined. This difficulty is exacerbated for compounds susceptible to degradation, which also decreases the solution concentration. The objective of this study was to determine sorption of hydrophilic pesticides by applying an unsaturated transient flow method, which enables determination of sorption at sufficiently small solution to soil ratios. The method makes use of piston-like displacement of the antecedent solution in equilibrium with sorbed phase when pesticide-free water is infiltrated into a soil column spiked with a pesticide. Pesticide sorption and the solution concentration are inferred from a plot of total pesticide content per unit mass of soil vs. water content in a region where the antecedent solution is accumulated. Thus, extraction of solution from relative dry soil is unnecessary. We tested this method for two hydrophilic pesticides, monocrotophos [dimethyl (E)-1-methyl-2-(methyl-carbamoyl) vinyl phosphate] and dichlorvos (2,2-dichlorovinyl dimethyl phosphate). The sorption coefficient, K(d), obtained for monocrotophos was slightly lower than that by batch method (K(d) = 0.10 vs. 0.19 L kg(-1)), whereas for dichlorvos, a compound highly susceptible to degradation, the unsaturated flow method yielded a much smaller K(d) (0.19 vs. 3.22 L kg(-1)). The K(d) values for both compounds were consistent with the observed retardation in the pesticide displacement in the columns. The proposed method is more representative of field conditions and particularly suitable for weakly sorbing organic compounds in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号