共查询到20条相似文献,搜索用时 15 毫秒
1.
Exact, analytical expressions for the diffusive leach rate of radioactive species from low-level, cylindrical, and rectangular-shaped wasteforms are obtained based on typical assumptions about the wasteform as are codified in the American National Standards Institute/American Nuclear Society ANSI/ANS 16.1 leachability standard of 1986. The new expressions are entirely analytical and model both the axial and the radial (for the cylindrical geometry) leach rate as a function of time, wasteform dimensions, diffusion coefficient of the species under study, and decay constant. Improved leach rate expressions for implementation in performance assessment codes of disposal sites are also provided along with an analysis of the associated errors. The numerical analysis utilizes parameter values applicable to strontium and faster-leaching nuclides from full-size, cement wasteforms under disposal conditions. With the decay constant set equal to zero, all the proposed expressions also apply to stabilized hazardous wastes and their disposal sites. 相似文献
2.
Trine Lund Hansen Thomas H?jlund Christensen Sonia Schmidt 《Waste management & research》2006,24(2):141-152
Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment. 相似文献
3.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions
occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both
processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism,
resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization
(DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline
environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage
(up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water.
In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in
the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose
degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the
pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions,
sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved,
however, is far beyond the scope of the presented overview. 相似文献
4.
The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. 相似文献
5.
Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste 总被引:1,自引:0,他引:1
Decrease of fossil fuel dependence and resource saving has become increasingly important in recent years. From this perspective, higher recycling rates for valuable materials (e.g. metals) as well as energy recovery from waste streams could play a significant role substituting for virgin material production and saving fossil resources. This is especially important with respect to residual waste (i.e. the remains after source-separation and separate collection) which in Denmark is typically incinerated. In this paper, a life-cycle assessment and energy balance of a pilot-scale waste refinery for the enzymatic treatment of municipal solid waste (MSW) is presented. The refinery produced a liquid (liquefied organic materials and paper) and a solid fraction (non-degradable materials) from the initial waste. A number of scenarios for the energy utilization of the two outputs were assessed. Co-combustion in existing power plants and utilization of the liquid fraction for biogas production were concluded to be the most favourable options with respect to their environmental impacts (particularly global warming) and energy performance. The optimization of the energy and environmental performance of the waste refinery was mainly associated with the opportunity to decrease energy and enzyme consumption. 相似文献
6.
7.
129I is one of the more hazardous nuclides occurring in radioactive waste. In the form of I−, its most likely speciation, it is poorly sorbed on most geologic media. Several workers have suggested the use of silver to precipitate I− as the insoluble AgI, in a cemented waste form, or as a “getter”. The efficacy of this procedure is examined by experiment, in conjunction with thermodynamic predictions.The addition of AgNO3 to Portland cement leads to coprecipitation with C-S-H, with low Ag solubilities ( 10 μmg/L); 2–;3 orders of magnitude lower than predicted (from Ag2O). AgI is stable in these matrices, with low aqueous I concentrations (<2 mg/L). In 85% BFS-15% OPC pastes, AgI is unstable due to redox and complexation reactions, with much I− passing into solution; concentrations up to 900 mg/L were observed. It is shown that repository conditions, on closure, are also likely to induce solubilisation of I− from AgI. It is concluded that the use of Ag is unlikely to significantly improve the immobilisation properties of the near field for radioiodine. 相似文献
8.
9.
In order to license an underground radioactive waste repository, it is important to demonstrate regulatory compliance with authoritative regulations. Also it is evidence from NRC's criteria for waste package performance that a stochastic analysis is necessary to provide that these criteria can be met with confidence. The first-order reliability method is an attractive tool to the stochastic analysis and particularly useful when statistical information is incomplete, as is common for problems occurring in the subsurface environment. The method is based on using the first-order Taylor series expansion at a specific linearization point to calculate a measure of reliability. Results from a first-order reliability analysis include an estimate of the probability of exceeding a specified performance criteria and measures of the sensitivity of the stochastic solution to the changes in input random variables and their statistical moments. The method of stochastic analysis is illustrated by analyzing the canister corrosion in a radioactive waste package. 相似文献
10.
This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different. 相似文献
11.
When a final option for radioactive waste is determined, it is necessary to demonstrate compliance of disposal system chosen with relevant regulations. Considering the large number of physical and chemical factors involved, the complexity of their interrelationships, and long time periods, a system approach is required. A stochastic analysis is also needed to ensure that these regulatory criteria can be met with confidence. Among a variety of models developed to treat the effect of uncertainty on system performance, the first-order reliability method is suggested as an attractive tool to stochastic problems incorporating any amount of probabilistic information. Based on the first-order approximation, the method can give a probability of failure against a preselected target value, and information concerning the sensitivity of the outcome to variations in the input random variables and their statistical moments. In this paper, for reliable prediction of the performance of repository for radioactive wastes, first-order reliability method is applied in treating the parameter uncertainties of predictive models. First, a thickness of canister corrosion and breach time of canister is calculated using a uniform corrosion model, combined with the diffusional transport modeling of radionuclides in the backfill material. Second, a fractional release rate for each radionuclide is derived from the evaluation of the performance of a waste package which consists of canister and backfill material. Third, a cumulative release rate at the accessible environment is obtained by geosphere transport modeling with the source term given as a fractional release rate. The proposed first-order reliability method can be applicable to a full range of problems occurring in radioactive waste management and beyond. 相似文献
12.
Emmanuel C. Gentil Anders Damgaard Michael Hauschild Göran Finnveden Ola Eriksson Susan Thorneloe Pervin Ozge Kaplan Morton Barlaz Olivier Muller Yasuhiro Matsui Ryota Ii Thomas H. Christensen 《Waste management (New York, N.Y.)》2010,30(12):2636-2648
A number of waste life cycle assessment (LCA) models have been gradually developed since the early 1990s, in a number of countries, usually independently from each other. Large discrepancies in results have been observed among different waste LCA models, although it has also been shown that results from different LCA studies can be consistent. This paper is an attempt to identify, review and analyse methodologies and technical assumptions used in various parts of selected waste LCA models. Several criteria were identified, which could have significant impacts on the results, such as the functional unit, system boundaries, waste composition and energy modelling. The modelling assumptions of waste management processes, ranging from collection, transportation, intermediate facilities, recycling, thermal treatment, biological treatment, and landfilling, are obviously critical when comparing waste LCA models.This review infers that some of the differences in waste LCA models are inherent to the time they were developed. It is expected that models developed later, benefit from past modelling assumptions and knowledge and issues. Models developed in different countries furthermore rely on geographic specificities that have an impact on the results of waste LCA models. The review concludes that more effort should be employed to harmonise and validate non-geographic assumptions to strengthen waste LCA modelling. 相似文献
13.
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45–75%) and C/N ratios (13.9–19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVS reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment. 相似文献
14.
The waste hierarchy is being widely discussed these days, not only by cost-benefit analysts, but a growing number of life cycle assessments (LCA) have also begun to question it. In this article, we investigate the handling of waste paper in Denmark and compare the present situation with scenarios of more waste being recycled, incinerated or consigned to landfill. The investigations are made in accordance with ISO 14040-43 and based on the newly launched methodology of consequential LCA and following the recent guidelines of the European Centre on Waste and Material Flows. The LCA concerns the Danish consumption of paper in 1999, totalling 1.2 million tons. The results of the investigation indicate that the waste hierarchy is reliable; from an environmental point of view recycling of paper is better than incineration and landfilling. For incineration, the reason for the advantage of landfilling mainly comes from the substitution of fossil fuels, when incinerators provide heat and electricity. For recycling, the advantage is related to the saved wood resources, which can be used for generating energy from wood, i.e., from renewable fuel which does not contribute to global warming. 相似文献
15.
Worapon Kiatkittipong Porntip Wongsuchoto Prasert Pavasant 《Waste management (New York, N.Y.)》2009,29(5):1628-1633
Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative. 相似文献
16.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration. 相似文献
17.
Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management. 相似文献
18.
LCA-IWM: a decision support tool for sustainability assessment of waste management systems 总被引:1,自引:0,他引:1
The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars. 相似文献
19.
Abu Qdais HA 《Waste management (New York, N.Y.)》2007,27(11):1666-1672
Mismanagement of solid waste leads to public health risks, adverse environmental impacts and other socio-economic problems. This is obvious in many developing countries around the world. Currently, several countries have realized that the way they manage their solid wastes does not satisfy the objectives of sustainable development. Therefore, these countries, including Jordan, which forms the case study presented here, have decided to move away from traditional solid waste management (SWM) options to more integrated solid waste management approaches. Unfortunately, in many developing countries like Jordan, the lack of adequate resources to implement the necessary changes is posing a serious obstacle. The present paper discusses the various practices and challenges of solid waste management in Jordan from both a technical and economic perspective. An overview of the current practices and their environmental implications in three major cities of the country, which generate more than 70% of the country's solid waste, is presented. Recent literature on solid waste management in Jordan has been reviewed; and data on the total amount of municipal solid waste generated, compositional variations over the last two decades, and future projections are presented. The necessity, importance and needs of solid waste recovery and reuse are identified. The review of the legal frameworks indicated that there is a need for detailed and clear regulations dealing specifically with solid waste. The service cost analysis revealed that none of the municipalities in Jordan sufficiently recover the cost of the services, with more than 50% being subsidized from the municipalities' budgets. The allocation of the available resources was analyzed and service performance indicators assessed. Factors that should be taken into consideration when making the decision to move from a traditional SWM approach to a more integrated approach are highlighted and suggestions for a more smooth transition are recommended. 相似文献
20.
J.D. Nixon D.G. Wright P.K. Dey S.K. Ghosh P.A. Davies 《Waste management (New York, N.Y.)》2013,33(11):2234-2244
The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87–92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. 相似文献