首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils   总被引:1,自引:0,他引:1  
The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH2PO4) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.  相似文献   

2.
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Artemia nauplii. Results show that at initial concentration of 20 mg L−1, atrazine was completely removed in up to 30 min using 10 mA cm−2 electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.  相似文献   

3.
碱液循环强化电动力学修复氟污染土壤   总被引:1,自引:0,他引:1  
1 V·cm~(-1)电解电压下,利用去离子水及NaOH溶液做电解液,研究了电解液不同循环方式下土壤氟在电动力学作用下的迁移特征,分析了利用碱液循环强化电动力学技术修复氟污染土壤的可行性.结果表明,以去离子水为电解液单独循环时,土壤氟的去除率为20.3%,而以NaOH溶液为电解液时去除率最高可达57.3%,碱性电解液可提高土壤氟的去除率,且随着碱性的增强土壤氟的去除率逐渐升高.电解液的不同循环方式也对土壤氟的去除产生显著影响,两极溶液串联循环时土壤氟的去除率明显升高.可以采用碱液循环强化电动力学技术修复氟污染土壤.  相似文献   

4.

Electrokinetic process for remediation of a shooting-range site was evaluated in this study. By field operation for 100 days, the newly designed electrokinetic system was evaluated for process stability, performance, and efficiency. The field site of this study was an abandoned military shooting range located in the Civilian Control Line of South Korea. The target area, only, was heavily contaminated by Pb and Cu to a depth of 0.5 m. After dry-sieving of the field soil to separate particulate Pb, two cells in a hexagonal (two-dimensional) arrangement, including ten anodes outside the cell and two cathodes in the middle, were prepared. The pH of each electrolyte was adjusted by use of concentrated HNO3, resulting in acid-enhanced electrokinetics. The monitoring results indicated that overall removal of heavy metals (Pb, Cu) was achieved, and that both heavy metals were removed from outside the cell. The average final efficiency of removal of Pb and Cu was 39.5 ± 35 and 63.8 ± 12%, respectively. Although the feasibility of this system was confirmed, for commercialization of the process confirmed drawbacks must be improved by further study.

  相似文献   

5.
The effects of natural zeolite (clinoptilolite, NZ) and synthetic zeolite (Y, SZ) on salinity and the presence of the harmful salts in the soil were compared on Raphanus sativus L. Nine soil treatments were studied: 1 (control), 2 (NaCl), 3 (Na2SO4), 4 (NZ), 5 (SZ), 6 (NZ?+?NaCl), 7 (SZ?+?NaCl), 8 (NZ?+?Na2SO4), and 9 (SZ?+?Na2SO4). Five radish seeds were planted in each pot. Each treatment was repeated 10 times. After 50 days under equal conditions some parameters consisting of the number of leaves (NL), total leaf area (TLA), total fresh weight (TFW), total dry weight (TDW), root fresh weight (RFW), air fresh weight (AFW), root dry weight (RDW) and air dry weight (ADW) were determined. Results showed that adding either NZ or SZ to salinic soil (treatments NZNaCl, NZNa2SO4, SZNaCl and SZNa2SO4) increased AFW, TFW and TDW. Using both NZ and SZ in normal soil increased the weight of plants by developing AFW. Further NZ was more effective on soil with NaCl than SZ.  相似文献   

6.
The degradation of camphor using titanium/ruthenium dioxide (TiO2/RuO2; 70:30) electrodes was investigated in a photoelectrochemical thin-film reactor under near UV light irradiation. Two different electrolytes (Na2SO4 and NaCl) were used in this work. Camphor degradation was monitored by solvent extraction methods and gas chromatography (GC) analysis. Comparative studies between photoelectrochemical, electrochemical, photolytic, and heterogeneous photocatalytical process were carried out. When NaCl was used, the degradation efficiency of camphor was improved, probably on account of electrochemical generation of active chlorine species and their photochemical conversion to chlorine radicals. Under these conditions camphor was completely mineralized at reaction times of 30 min.  相似文献   

7.
Electrokinetic process for remediation of a shooting-range site was evaluated in this study. By field operation for 100 days, the newly designed electrokinetic system was evaluated for process stability, performance, and efficiency. The field site of this study was an abandoned military shooting range located in the Civilian Control Line of South Korea. The target area, only, was heavily contaminated by Pb and Cu to a depth of 0.5 m. After dry-sieving of the field soil to separate particulate Pb, two cells in a hexagonal (two-dimensional) arrangement, including ten anodes outside the cell and two cathodes in the middle, were prepared. The pH of each electrolyte was adjusted by use of concentrated HNO3, resulting in acid-enhanced electrokinetics. The monitoring results indicated that overall removal of heavy metals (Pb, Cu) was achieved, and that both heavy metals were removed from outside the cell. The average final efficiency of removal of Pb and Cu was 39.5 ± 35 and 63.8 ± 12%, respectively. Although the feasibility of this system was confirmed, for commercialization of the process confirmed drawbacks must be improved by further study.  相似文献   

8.
A soil remediation method combining in situ reduction of Cr(VI) with approaching anodes electrokinetic (AAs-EK) remediation is proposed. EK experiments were conducted to compare the effect of approaching anodes (AAs) and fixed electrodes (FEs) with and without sodium bisulfite (NaHSO3) as a reducing agent. When NaHSO3 was added to the soil before EK treatment, 90.3% of the Cr(VI) was reduced to Cr(III). EK experiments showed that the adverse effect of contrasting migration of Cr(III) and Cr(VI) species, which limits the practical application of this technique, was eliminated in the presence of the reducing agent. Furthermore, Tessier fractionation analysis indicated that the reducing agent changed the distribution of the chemical forms of Cr. The AAs-EK method was shown to acidize the soil as the anode moved toward the cathode and this acid front pushed the “focusing” region toward the cathode. After remediation, the pH of the soil was between 1.8 and 5.0 in AAs-EK experiments. The total Cr removal efficiency was 64.4% (except in the “focusing” region) when the reduction reaction was combined with AAs-EK method. We conclude that AAs-EK remediation in the presence of NaHSO3 is an appropriate method for Cr-contaminated soil.  相似文献   

9.
Preface     
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal–contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   

10.
ABSTRACT

The aim of this investigation was to examine the ability of enhanced electrokinetic (EK) remediation to efficiently remove quinoline from contaminated kaolinite soils. In order to accomplish this, the effect of a voltage gradient and anode buffer concentration on migration of quinoline in kaolinite was determined. The results showed that EK transport process effectively stimulated desorption and movement of quinoline in kaolinite. The rate and distance of migration rose with increasing voltage gradient and anode buffer concentration under certain conditions. The mechanisms that drive quinoline migration by electrodynamic processes were established as attributed to either electromigration or electroosmosis, and both played key roles in driving quinoline to migrate towards the cathode.  相似文献   

11.
In order to examine the potential of biosurfactants in soil remediation, and to investigate the effects of several operating conditions, such as flow rate, biosurfactant concentration and surfactant type, biosurfactant-enhanced soil flushing was conducted. In the biosurfactant-enhanced soil flushing process, the removal efficiency increased as the flow rate decreased. Rhamnolipid showed no effect on the removal efficiency of phenanthrene and diesel from sand in the concentration range 0.3-0.5%. However, rhamnolipid showed higher efficiencies for the removal of phenanthrene and diesel from sand than Tween 80. Based on total recovery, following an equivalent pore volume flush, it was more difficult to remove diesel than phenanthrene. In order to obtain the specific removal efficiency, more pore volumes of surfactant solution may be required in field applications. Under optimum conditions, the biosurfactant removed as much as 70% of the phenanthrene and 60% of the diesel in the sand. These results indicate that the use of biosurfactants in the flushing process is favorable, not only with respect to the environment, but also on removal efficiencies.  相似文献   

12.
A soil washing process was applied to remediate arsenic (As)-contaminated stream sediments around an abandoned mine in Goro, Korea. Laboratory scale soil washing experiments for As-contaminated stream sediments were performed under various washing conditions in order to maximize As removal efficiency. Stream sediments were taken from two sites (S1 and S5) along the main stream connected to an abandoned mine. Stream sediments at the two sites were divided into two groups (≥0.35 and <0.35 mm in diameter), giving four types of sediments, which were thereupon used for soil washing experiments. The results of soil washing experiments involving various pH conditions suggested that As removal efficiency is very high in both strongly acidic and basic solutions (pH 1 and 13), regardless of sediment type. Removal efficiencies for fine sediments from S1 and S5 were >95% after 1 h of washing with 0.2 M citric acid (C6H8O7). When using 0.2 M citric acid mixed with 0.1 M potassium phosphate (KH2PO4), the As removal efficiency increased to 100%. When recycled washing solution was applied, As removal efficiency was maintained at a level greater than 70%, even after eight recycling events. This suggests that the recycling of washing solution could be successfully applied as a means of decreasing the cost of the washing process. Results from the experiments suggest that soil washing is a potentially useful process for the remediation of As-contaminated stream sediments around abandoned mines.  相似文献   

13.
Oxidation of aldehydes to carboxylic acids is a major reaction. Conventionally, this reaction is carried out with oxidants and metal catalysts, thus producing unwanted metal waste. Recently, aqueous media have been used as an alternative for toxic organic solvents. Here, we tested the clathrate-structured, neutral hydrogen peroxide adduct 4Na2SO4·2H2O2·NaCl for the oxidation of aldehydes to acids in aqueous solution. We found that various aromatic, heteroaromatic and aliphatic aldehydes were selectively oxidized to corresponding acids in 70–98% yields. This simple acid–base treatment allows to separate easily the acid product in high purity without any organic solvent. Moreover, the adduct is produced using 25% H2O2, with inexpensive sodium sulphate, Na2SO4, and sodium chloride, NaCl. The adduct is a non-toxic white crystalline solid, readily soluble in water, and easy to handle.  相似文献   

14.
Pyrite and other iron sulfides are readily oxidized by dissolved oxygen in aqueous phase, producing acidity and Fe2+, which causes significant environmental problems. Applications of surface coating agents (Na2SiO3 and KH2PO4) were conducted at Boeun (Chungbuk, South Korea) outcrop site, and their efficiencies to inhibit the oxidation of sulfide minerals were monitored for a long-term period (449 days). The rock sample showed positive Net Acid Production Potential (NAPP = 20.23) and low Net Acid Generation pH (NAGpH = 2.42) values, suggesting that the rock sample was categorized in the potential acid-forming group. For the monitored time period (449 days), field study results showed that the application of Na2SiO3 effectively inhibited the pyrite oxidation as compared to KH2PO4. Na2SiO3 as a surface coating agent maintained pH 5–6 and reduced oxidation of pyrite surface up to 99.95 and 97.70 % indicated by Fe2+ and SO4 2? release, respectively. The scanning electron microscope and energy-dispersive X-ray spectrometer analysis indicated that the morphology of rock surface was completely changed attributable to formation of iron silicate coating. The experimental results suggested that the treatment with Na2SiO3 was highly effective and it might be applicable on field for inhibition of iron sulfide oxidation.  相似文献   

15.
Here we demonstrate that an aqueous solution of the herbicide amitrole can be completely depolluted at pH 3.0 by anodic oxidation and electro-Fenton process. Anodic oxidation gives faster degradation with a boron-doped diamond anode than with a Pt anode. Electro-Fenton with a Pt anode and 1 mmol l –1 Fe2+ as catalyst yields the quickest depollution. Amitrole decay always follows a pseudo first-order reaction. NO3 and NH4+ are accumulated in the medium during mineralization, although volatile N-products are also formed. These environmentally friendly electrochemical treatments could be applied to the remediation of wastewaters containing amitrole.  相似文献   

16.
模拟镉污染土壤的电动力学修复研究   总被引:3,自引:0,他引:3  
采用阳离子交换膜调控电解过程中pH值的变化和电解富集土壤中的元素,在pH=5.0的缓冲溶液中进行土壤的电动强化处理.通过对镉形态的分析,找到镉在电场中迁移转换的规律.在处理时间内,阳极附近镉的去除率达99%以上,阴极镉的富积系数达2.026,表明电场对土壤中重金属的迁移溶出有强化去除作用.  相似文献   

17.
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal-contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   

18.
Electrokinetic process for remediation of a shooting-range site was evaluated in this study. By field operation for 100 days, the newly designed electrokinetic system was evaluated for process stability, performance, and efficiency. The field site of this study was an abandoned military shooting range located in the Civilian Control Line of South Korea. The target area, only, was heavily contaminated by Pb and Cu to a depth of 0.5 m. After dry-sieving of the field soil to separate particulate Pb, two cells in a hexagonal (two-dimensional) arrangement, including ten anodes outside the cell and two cathodes in the middle, were prepared. The pH of each electrolyte was adjusted by use of concentrated HNO(3), resulting in acid-enhanced electrokinetics. The monitoring results indicated that overall removal of heavy metals (Pb, Cu) was achieved, and that both heavy metals were removed from outside the cell. The average final efficiency of removal of Pb and Cu was 39.5 ± 35 and 63.8 ± 12%, respectively. Although the feasibility of this system was confirmed, for commercialization of the process confirmed drawbacks must be improved by further study.  相似文献   

19.
重金属污染土壤的电动原位修复技术研究   总被引:4,自引:0,他引:4  
电动力学修复技术作为一种新型的修复技术,由于其处理土壤污染的高效性,近几年来受到了越来越多的关注。综述了电动力学修复技术原理及近几年来其在重金属修复中的最新研究进展,阐述了电动力学修复技术相对于其它修复技术的优势,并指出了电动修复技术中需要克服的技术障碍,探讨了其大规模商业应用的可行性。电动技术能够强化土壤物质的传质过程,能够高效、快速定向迁移土壤中重金属离子达到去除的目的;同时电动技术可以与其它修复技术结合发展出系列组合修复技术,具有广泛的应用前景。从单一电动到复合电动是今后电动力学技术发展的重要方向。目前对污染物质复合电动力学效应下的迁移机理及模型、不同土壤性质(组分、酸碱性等)对于污染物质去除效率及其调控措施的研究仍需进一步深入。  相似文献   

20.
This article reports the complete mineralization of atrazine. Atrazine has been the most widely used s-triazine herbicide. Atrazine occurs in natural waters and presents a potential danger for public health because atrazine is considered as an endocrine disruptor. The use of chemical, photochemical and photocatalytic advanced oxidation processes (AOPs) to decontaminate waters containing atrazine only allowed its conversion into the cyanuric acid as ultimate end products, since it cannot be completely degraded by hydroxyl radicals (OH) produced by these techniques. The same behavior was previously reported for anodic oxidation and electro-Fenton with Pt anode, although better performances were found using boron-doped diamond (BDD) anode but without explaining the role of generated OH. Here, the oxidative action of these radicals in such electrochemical AOPs has been clarified by studying the mineralization process and decay kinetics of atrazine and cyanuric acid in separated solutions by anodic oxidation with BDD and electro-Fenton with Pt or BDD anode using an undivided cell with a carbon-felt cathode under galvanostatic conditions. Results showed that electro-Fenton with BDD anode was the more powerful treatment to degrade both compounds. Almost total mineralization, 97% total organic carbon (COT) removal, of atrazine was only feasible by this method with a faster removal of its oxidation intermediates by OH formed at the BDD surface than that formed in the bulk from Fenton reaction, although the latter process caused a more rapid decay of the herbicide. Cyanuric acid was much slowly mineralized mainly with OH produced at the BDD surface, and it was not degraded by electro-Fenton with Pt anode. These results highlight that electrochemical advanced oxidation processes (EAOPs) using a BDD anode are more powerful than the classical electro-Fenton process with Pt or PbO2 anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号