首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concentrations of airborne radon ranging from 0.05 to 135 pCi/L were found in houses in Maine. Tracketch cups were placed in five positions for 100 houses to determine integrated average radon concentrations over the period October 1980–May 1981. To investigate the association between elevated radon concentrations in well water and the indoor airborne radon concentrations, the radon in the water supplies of these houses was measured by liquid scintillation. Monitors of airborne radon, recording in intervals of 10 min for periods of 5–7 days, were used for dynamic studies in 18 houses, determining the component of airborne radon associated with major water uses, such as showers, laundry, and dishwashing, which liberate radon in bursts. House residents kept logs noting the time of major water uses. For some of the houses, ventilation rates ranging from 0.3 to 2 air changes per hour were determined by analysis of the dynamic data. The component of airborne radon associated with water sources was found to vary inversely with ventilation rate and directly with waterborne radon concentration, with 0.8 ± 0.2 pCi Rn/L air per nCi Rn/L water at a ventilation rate of 1.0 air change per hour. The data are pertinent to a study which has revealed significant correlations between county averages, from the National Cancer Institute, or age-adjusted cancer mortality rates in Maine and average values of radon concentrations in water for the counties.  相似文献   

2.
A subcommittee of the Nordic Committee for Building Codes has released guidelines for building regulations regarding indoor air quality, especially concerning ventilation. The main features of the guidelines, such as acceptable outdoor air quality for ventilation and minimum outdoor air flows for dwellings and offices, are presented and discussed. Mechanical ventilation is, in principle, required in all buildings including dwellings, due to the requirement of a minimum outdoor air change of 0.5 h−1 and the normal highly airtight nature of new buildings. The guidelines are a basis for designing energy-efficient buildings while maintaining an indoor air quality which provides acceptable comfort and does not impair health.  相似文献   

3.
The indoor and outdoor air quality of two staff quarters of Hong Kong Polytechnic University at Tsim Sha Tsui East (TSTE) and Shatin (ST) were investigated. The air sampling was carried out in winter for about two months starting from January to February of 1996. Fifteen flats from each staff quarter were randomly selected for indoor/outdoor air pollutant measurements. The pollutants measured were NOx, NO, NO2, SO2, CO, and O3. The variations of pollutant concentrations between indoor and outdoor air were investigated on weekday mornings, weekday evenings, weekend mornings, and weekend evenings. All indoor/outdoor pollutant concentrations measured did not exceed the ASHRAE/NAAQS standard. The carbon monoxide concentrations indoors were systemically higher than those outdoors at the TSTE and the ST quarters, both on weekdays and Sunday, which indicates there are CO sources indoors. Except for CO, the indoor levels of other pollutants (NOx, NO, NO2, SO2, and O3) are lower than those outdoors. There was a significant correlation (P < 0.05) between indoor and outdoor concentrations for SO2 and O3 at both the TSTE and the ST quarters. Except for O3, the mean concentrations of all the pollutants in the TSTE quarters, both indoor and outdoor, were higher than that of the ST quarters in all sampling periods. All indoor and outdoor O3 levels were lower at the TSTE quarters than those at the ST quarters. The O3 ratios of TSTE/ST were 0.72 outdoor and 0.79 indoor. This can be explained by the NO titration reaction through NO conversion to NO2.  相似文献   

4.
Instantaneous measurements of equilibrium equivalent concentration of radon (EEC(Rn)) were taken over a period of 1 year in 2004 in a typical house at Amritsar city, located in the northwest part of India. A method based on absolute beta counting subsequent to grab aerosol sampling was used. During that year, EEC(Rn) varied between 1.56B qm(-3) and 22.77B qm(-3) with average value of 8.76Bb qm(-3). EEC(Rn) decreased with the transition from winter to summer and vice versa, having a negative correlation with outdoor temperature. The use of mechanical ventilation, under normal living conditions during summer, caused an extra decrease in the concentrations. The variations with temperature and mechanical ventilation are discussed. Some major issues related to the uncertainties in dose calculations caused by the lack of knowledge of equilibrium factor and ignoring the effect of life style on the radon and its progeny concentrations are discussed.  相似文献   

5.
This report presents results of a review of available methods for control of environmental hazards applied to indoor air pollutants. Indoor air pollution originates from transport of ambient outdoor air contaminants into occupied spaces by natural infiltration ventilation, or by mechanical ventilation using outdoor makeup air, plus contributions from indoor emission sources. When air exchange with the external ambient environment is reduced to conserve energy, contributions from indoor emission sources may dominate indoor air pollutant levels. This paper identifies alternative methods available to control indoor air pollutant exposures. The performance characteristics of ventilation systems and of air cleaning devices used in mixed modes for ventilation of occupied spaces are described. Models for predicting effectiveness of several alternative modes are reviewed, with field trial validation results cited where available. Results of previous confined-space studies are briefly reviewed as points of departure for consideration of necessary air quality, ventilation, and air cleaning. Understanding of indoor air contaminant generation and controls is aided by examination of earlier studies of indoor air quality, using modern perspectives on occupational environmental health and hygiene.  相似文献   

6.
Indoor and soil gas Radon (222Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor 222Rn gas concentration values. In the second stage, soil gas 222Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although 222Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas 222Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.  相似文献   

7.
This study investigates the contribution of radon (222Rn)-bearing water to indoor 222Rn in thermal baths. The 222Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM10 and PM2.5) and carbon dioxide (CO2) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m−3 of 222Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which 222Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average 222Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor 222Rn levels were influenced by the 222Rn concentrations in the hot spring water and the bathing times. The average 222Rn transfer coefficients from water to air were 6.2 × 10−4-4.1 × 10−3. The 24-h average levels of CO2 and PM10 in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM2.5. Radon and PM10 levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.  相似文献   

8.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   

9.
Given the shrinking spatial contrasts in outdoor air pollution in Switzerland and the trends toward tightly insulated buildings, the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) needs to understand to what extent outdoor air pollution remains a determinant for residential indoor exposure. The objectives of this paper are to identify determining factors for indoor air pollution concentrations of particulate matter (PM), ultrafine particles in the size range from 15 to 300 nm, black smoke measured as light absorbance of PM (PMabsorbance) and nitrogen dioxide (NO2) and to develop predictive indoor models for SAPALDIA. Multivariable regression models were developed based on indoor and outdoor measurements among homes of selected SAPALDIA participants in three urban (Basel, Geneva, Lugano) and one rural region (Wald ZH) in Switzerland, various home characteristics and reported indoor sources such as cooking. Outdoor levels of air pollutants were important predictors for indoor air pollutants, except for the coarse particle fraction. The fractions of outdoor concentrations infiltrating indoors were between 30% and 66%, the highest one was observed for PMabsorbance. A modifying effect of open windows was found for NO2 and the ultrafine particle number concentration. Cooking was associated with increased particle and NO2 levels. This study shows that outdoor air pollution remains an important determinant of residential indoor air pollution in Switzerland.  相似文献   

10.
Determinants of outdoor, indoor and personal concentrations of nitrogen dioxide (NO2) were assessed in a subset of pregnant women of the Spanish INMA (Environment and Childhood) Study. Home indoor and outdoor NO2 concentrations were measured during 48 h with passive samplers for 50 and 58 women from the INMA cohorts of Valencia and Sabadell, respectively. Women from Sabadell also carried personal NO2 samplers during the same period. Data on time–activity patterns, socio-economic characteristics, and environmental exposures were obtained through questionnaires. Multiple linear regression models were developed to predict NO2 levels.In Valencia, median outdoor NO2 levels (42 µg/m3) were higher than median indoor levels (36 µg/m3). In Sabadell, personal NO2 showed the highest median levels (40 µg/m3), followed by indoor (32 µg/m3) and outdoor (29 µg/m3) levels. Personal exposure to NO2 correlated best with the indoor NO2 levels. Temporal and traffic-related variables were significant predictors for outdoor NO2 levels. Thirty-two percent of the indoor NO2 variability in the two cohorts was explained by outdoor NO2 levels and the use of the gas appliances. The model for personal exposure accounted for 59% of the variance in NO2 levels in Sabadell with four predictor variables (outdoor and indoor NO2 levels, time spent in outdoor environments and time exposed to a gas cooker). No significant association was found between personal or indoor NO2 levels and exposure to environmental tobacco smoke (ETS) at home.Personal NO2 levels were found to be strongly influenced by indoor NO2 concentrations. The study supports the use of time–activity patterns along with indoor measurements to predict personal exposure to traffic-related air pollution.  相似文献   

11.
The amount of NO2 and NO produced by the machine smoking of cigarettes was determined for 15 commercial Canadian brands. Average yield of NO was 1.44 μmoles or about 13% of the average reported for American cigarettes. Levels of NO2 were less than 12% of NO and were probably due to the oxidation of NO. In order to assess the contribution of tobacco smoke to levels of NO in ambient air, 5 brands of cigarettes were smoked in 27 cubic meter controlled environment room. Ventilation conditions were either 2.5 or 5.0 air changes per hour (ACH) and each experiment was replicated 3 times for a total of 30 experiments. Ventilation rates of 0.3 and 1.5 ACH were also selected in a second series of experiments in which only one brand of cigarette was smoked. Least squares estimates for the effective ventilation rates were obtained in the usual manner after linearizing the decay portion of the NO time curve. In each of the experiments, the regression explained at least 95% of the variation in the levels of NO with time. Loss of NO due to factors other than ventilation appeared to be constant within experimental error and averaged 2.22 ACH. Equilibrium values for NO were grossly underestimated when results from currently accepted proecedures for smoke analysis were used in modeling the growth and decay of NO. Goodness-of-fit was improved when equilibrium values were estimated based on observed levels in ambient air. This approach may be more suitable for evaluating the potential contribution of cigarette smoke to levels of indoor air pollutants.  相似文献   

12.
The measurement campaigns have been done in the rural community of Niska Banja, a spa town located in southern Serbia, to evaluate population exposure to natural radioactivity. After a screening survey in 200 houses, annual radon and thoron concentrations were measured in 34 houses, and in 2004 a detailed investigation was carried out at six houses with elevated indoor radon concentrations. The paper presents the results of these detailed measurements. The complementary techniques were applied to determine radon and thoron concentrations in indoor air, in soil gas, radon exhalation from soil, soil permeability, and indoor and outdoor gamma doses. Soil and water samples were collected and analysed in the laboratory. Indoor radon and thoron concentrations were found to be more than 1kBqm(-3) and 200Bqm(-3), respectively. Extremely high concentrations of soil-gas radon (>2000kBqm(-3)) and radon exhalation rates (1.5mBqm(-2)s(-1)) were observed. These results will be utilised to set up the methodology for a more systematic investigation.  相似文献   

13.
Using integrating NO2 diffusion dosimeters, personal, indoor and outdoor exposures were measured for nine families in Topeka, Kansas. NO2 exposures in homes that used gas for cooking were clearly different from those in homes that used electricity. The gas-cooking homes had indoor levels three times the outdoor levels. Members of the gas-cooking households had levels twice those of electric-cooking families and twice the outdoor levels. A linear model that includes outdoor concentrations and stove types explains 77% of the variance in observed NO2 exposure. The differential NO2 exposures in homes with and without gas stoves should be considered in epidemiologic studies of the health effects of air pollution.  相似文献   

14.
Efforts to reduce the energy needs to heat or cool dwellings have the potential to create new health hazards. Increases in indoor levels of radon and its progeny from the reduction in air exchange rates add a substantial radioactive burden to the general population. Other indoor pollutants reaching critical concentrations in homes with low air exchange rates are CO and NO2 from unvented combustion in gas stoves and heaters, tobacco smoke, and asbestos fibers. In addition, insulation materials and certain types of furniture may contribute the toxicant formaldehyde diffusing from foam injected walls or chipboard. Risk estimations using linear dose-response relationships show risk factors per kWh saved which are orders of magnitude greater than for a kWh produced by large power plants using coal, oil, gas, or uranium.  相似文献   

15.
Active soil ventilation techniques have been tested in 26 block-wall basement houses in eastern Pennsylvania with significantly elevated indoor radon concentrations, generally above 740 Bq/m3, and the results indicate that radon levels can be reduced substantially often below the U.S. Environmental Protection Agency (EPA) guideline of 148 Bq/m3, if effective suction can be drawn on the soil underneath the concrete slabs of these houses. Such effective suction appears achievable when either: 1) the house has a complete loop of drain tile around its footings for water drainage purposes, and suction is drawn on that loop; or 2) a sufficient number of suction pipes can be inserted at the proper locations into the crushed rock or the soil underneath the slab.  相似文献   

16.
A standardized questionnaire was used in a two-year follow-up study to test the effectiveness of non-regulatory recommendations to improve indoor air quality of 103 ice arenas in Finland. In addition, the performance of a state-of-the-art emission control technology (ECT) on propane-fueled resurfacers was evaluated by measuring the one-week average nitrogen dioxide (NO2) concentration in a small sample of arenas. The number of retrofitted ECT on propane-fueled resurfacers increased from 6 to 37 (8% to 37% of ice arenas) and the number of electric resurfacers from 7 to 9 (both 9% of arenas) in 1994–1996. At the same time, the prevalence of inadequate ventilation increased among the most susceptible small arenas (volume <30 000 m3) from 11 (31%) to 19 (38%). Combustion-powered resurfacers (88%) and inadequate ventilation (24%) were prevalent also among the 17 new arenas built in 1994–1996. ECT resurfacers significantly decreased the mean indoor NO2 concentration of eleven arenas from 650 μg/m3 to 147 μg/m3. Thus, retrofitting resurfacers with ECT seems to be a feasible mitigation option to improve indoor air quality in ice arenas, but the ultimate solution is an electric ice resurfacer. Non-regulatory recommendations seem to be partially effective in abatement against the air quality problems, but additional regulatory measures are needed for full compliance in all arenas.  相似文献   

17.
Monitoring of radon, thoron and their daughter products was carried out in houses of Kumaun Himalaya, India using LR-115 plastic track detectors. The measurements were made in residential houses from June 1999 to May 2000 at a height of 2.5 m from ground level using a twin chamber radon dosimeter. The twin chamber radon dosimeter can record the values of radon, thoron and their decay products separately. Maximum and minimum indoor radon and thoron concentrations were evaluated and activity concentrations of radon and thoron daughters were estimated. The resulting dose rates due to radon, thoron and their decay products varied from 0.04 to 1.89 microSv/h. A detailed analysis of the distribution of radon, thoron and their decay products inside the house is also reported. The observed dose rates inside the houses of Kumaun Himalaya were found to be lower than the ICRP recommended value of 200 Bq/m3 and thus are within safe limits.  相似文献   

18.
The concentrations of 222Rn (radon) and its progeny with surrounding environmental gamma-dose rates were measured simultaneously inside and outside of buildings at 10 locations around Taipei and Hualien in Taiwan. For summer radon in Taiwan, indoor concentrations were estimated to be about 20 Bq m(-3) with about 90 nSv h- of environmental gamma, and outdoors, about 10 Bq m(-3) with about 70 nSv h(-1). The equilibrium factors were calculated to be 0.2-0.3 indoors and 0.3-0.4 outdoors. Indoor radon concentration had a weak positive correlation with gamma-dose rate. Since there is a possibility that high radon concentrations exist indoors during the cool season in Taiwan because of extremely low ventilation rates in the dwellings, a winter survey in January through February will be needed for future estimation of the annual effective dose.  相似文献   

19.
Data on indoor/outdoor pollutant and tracer concentrations were collected during different periods in 1981 at a residence in Newton, MA. Special studies within the kitchen were conducted to determine the vertical and horizontal variability of pollutant and tracer gas concentrations. A reactive chemistry model incorporating simplified NOx chemistry was developed to simulate pollutant concentrations indoors. Multicompartmental mathematical modeling tools were also developed and tested to estimate efficiently the effective, emission, ventilation, and removal rates, as well as the intercompartmental pollutant exchange coefficients. Model studies utilizing two- and three-compartment systems and tracer measurements proved that the dynamics of pollutant mixing inside a kitchen is not only complex but may be quite important in controlling spatial and temporal variability of reactive species. Further monitoring and modeling studies to investigate the critical aspects of the short-term dynamics of the reactive pollutants inside homes with gas cooking stoves are recommended.  相似文献   

20.
The expectation of elevated 222Rn levels in modern homes that have low air interchange rates with the outdoor air caused us to survey both solar and conventional homes in northeastern New York State. As a group, homes that are more airtight have three times the 222Rn levels of the conventional homes; they have other specific problems that are introduced or exaggerated by modern construction. For example, the highest two levels of radon in the solar homes give doses over 30 years that are known to produce lung cancer in 1% of uranium miners. Summer readings in more than one-half of the cases are different from winter ones by a factor of two or more, so that year-round measurements are necessary for precise dosimetry. The track-etching technique is ideally suited for such measurements. Radon emanation measurements on soils and sand demonstrate a considerable variety of release rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号