首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
In 1998 the American Conference for Governmental Industrial Hygienists (ACGIH) proposed size selective sampling for wood dust based on the inhalable fraction. Thus the proposed threshold limit values (TLVs) require the use of a sampler whose performance matches the inhalable convention. The Institute of Occupational Medicine (IOM) sampler has shown good agreement with the inhalable convention under controlled conditions, and the Button sampler, developed by the University of Cincinnati, has shown reasonable agreement in at least one laboratory study. The Button sampler has not been previously evaluated under wood working conditions, and the IOM has been shown to sample more mass than expected when compared to the standard closed-face cassette, which may be due to the collection of very large particles in wood working environments. Some projectile particles may be > 100 microm aerodynamic diameter and thus outside the range of the convention. Such particles, if present, can bias the estimates of concentration considerably. This study is part of an on-going research focus into selecting the most appropriate inhalable sampler for use in these industries, and to examine the impact of TLV changes. This study compared gravimetric analyses (National Institute of Occupational Safety and Health Method 0500) of side-by-side personal samples using the Button, IOM, and 37 mm closed-face cassette (CFC) under field-use conditions. A total of 51 good sample pairs were collected from three wood products industries involved in the manufacturing of cabinets, furniture, and shutters. Paired t-tests were run on each sample pair using Statistical Package for the Social Sciences (SPSS) version 10. The IOM and the CFC measured statistically different concentrations (p < 0.0005, n = 16). The IOM and Button measured statistically different concentrations (p = 0.020, n = 12). The Button and CFC did not measure statistically different concentrations of wood dust (p = 0.098, n = 23). Sampler ratios for IOM/CFC pairs ranged from 1.19-19 (median 3.35). Sampler ratios for IOM/Button pairs ranged from 0.49-163 (median 3.15). Sampler ratios for CFC/Button pairs ranged from 0.36-27 (median 1.2). In all cases, higher ratios were associated with higher concentrations. The median relative difference between the IOM's and CFC's is in accord with prior field studies in woodworking environments, and, taken together, the data imply a conversion factor greater than the 2.5 normally applied to CFC results to approximate inhalable values, as measured by the IOM. Raising the limit values by approximately 50% appears warranted for this particular situation of inhalable wood dust measured by the IOM. The IOM/Button and CFC/Button ratios were unexpectedly low, which may be due to the exclusion of very large particles, collected by the IOM and CFC samplers. Further work is required to explain these results.  相似文献   

2.
A method has been described previously for determining particle size distributions in the inhalable size range collected by personal samplers for wood dust. In this method, the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood-dust particles which are generally large and close to rectangular prisms in shape. The method was used to investigate the differences in total mass found previously in studies of side-by-side sample collection with different sampler types. Over 200 wood-dust samples were collected in three different wood-products industries, using the traditional 37 mm closed-face polystyrene/acrylonitrile cassette (CFC), the Institute of Occupational Medicine (IOM) inhalable sampler, and the Button sampler developed by the University of Cincinnati. Total mass concentration results from the samplers were found to be in approximately the same ratio as those from traditional long-term gravimetric samples, but about an order of magnitude higher. Investigation of the size distributions revealed several differences between the samplers. The wood dust particulate mass appears to be concentrated in the range 10-70 aerodynamic equivalent diameter (AED), but with a substantial mass contribution from particles larger than 100 microm AED in a significant number of samples. These ultra-large particles were found in 65% of the IOM samples, 42% of the CFC samples and 32% of the Button samples. Where present, particles of this size range dominated the total mass collected, contributing an average 53% (range 10-95%). However, significant differences were still found after removal of the ultra-large particles. In general, the IOM and CFC samplers appeared to operate in accordance with previous laboratory studies, such that they both collected similar quantities of particles at the smaller diameters, up to about 30-40 [micro sign]m AED, after which the CFC collection efficiency was reduced dramatically compared to the IOM. The Button sampler collected significantly less than the IOM at particle sizes between 10.1 and 50 microm AED. The collection efficiency of the Button sampler was significantly different from that of the CFC for particle sizes between 10.1 and 40 microm AED, and the total mass concentration given by the Button sampler was significantly less than that given by the CFC, even in the absence of ultra-large particles. The results are consistent with some relevant laboratory studies.  相似文献   

3.
4.
Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations.  相似文献   

5.
Personal and area air samples were taken at a scrap lead smelter operation in a bullet manufacturing facility. Samples were taken using the 37-mm styrene-acrylonitrile closed-face filter cassette (CFC, the current US standard device for lead sampling), the 37-mm GSP or "cone" sampler, the 25-mm Institute of Occupational Medicine (IOM) inhalable sampler, and the 25-mm Button sampler (developed at the University of Cincinnati). Polyvinylchloride filters were used for sampling. The filters were pre- and post-weighed, and analyzed for lead content using a field-portable X-ray fluorescence (XRF) analyzer. The filters were then extracted with dilute nitric acid in an ultrasonic extraction bath and the solutions were analyzed by inductively coupled plasma optical emission spectroscopy. The 25-mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37-mm filters. The single reading from the 25-mm filters was adjusted for the nominal area of the filter to obtain the mass loading, while the three readings from the 37-mm filters were inserted into two different algorithms for calculating the mass loadings, and the algorithms were compared. The IOM sampler was designed for material collected in the body of the sampler to be part of the collected sample as well as that on the filter. Therefore, the IOM sampler cassettes were rinsed separately to determine if wall-loss corrections were necessary. All four samplers gave very good correlations between the two analytical methods above the limit of detection of the XRF procedure. The limit of detection for the 25-mm filters (5 microg) was lower than for the 37-mm filters (10 microg). The percentage of XRF results that were within 25% of the corresponding ICP results was evaluated. In addition, the bias from linear regression was estimated. Linear regression for the Button sampler and the IOM sampler using single readings and the GSP using all tested techniques for total filter loading gave acceptable XRF readings at loadings equivalent to sampling at the OSHA 8-hour Action Level and Permissible Exposure Limit. However, the CFC only had acceptable results when the center reading corrected for filter area was used, which was surprising, and may be a result of a limited data set. In addition to linear regression, simple estimation of bias indicated reasonable agreements between XRF and ICP results for single XRF readings on the Button sampler filters, (82% of the individual results within criterion), and on the IOM sampler filters (77% or 61%--see text), and on the GSP sampler filters using the OSHA algorithm (78%). As a result of this pilot project, all three samplers were considered suitable for inclusion in further field research studies.  相似文献   

6.
Studies on personal dust and endotoxin concentrations among animal farmers have been either small or limited to a few sectors in their investigations. The present study aimed to provide comparable information on the levels and variability of exposure to personal dust and endotoxin in different types of animal farmers. 507 personal inhalable dust samples were collected from 327 farmers employed in 54 pig, 26 dairy, 3 poultry, and 3 mink farms in Denmark. Measurements in pig and dairy farmers were full-shift and performed during summer and winter, while poultry and mink farmers were monitored during 4 well-defined production stages. The collected samples were measured for dust gravimetrically and analyzed for endotoxin by the Limulus amebocyte lysate assay. Simple statistics and random-effect analysis were used to describe the levels and the variability in measured dust and endotoxin exposure concentrations. Measured inhalable dust levels had an overall geometric mean of 2.5 mg m(-3) (range 相似文献   

7.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where different sampler types are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a bronze foundry where lead is added to an alloy of copper, zinc and iron to improve casting, using the closed-face 37 mm cassette, the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). For lead, all five samplers gave correlations (r(2)) greater than 0.9 between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). However, a correction was required to adjust linear regression trendlines to give a 1 : 1 correlation for the average of three readings across the GSP sampler, and a similar correction was required for the single readings from the IOM sampler and the 25 mm filter cassette. The bias possibly is due to interference from other metals, possibly copper which can absorb the fluorescent radiation of lead. In the case of the Button sampler, the bias is larger, indicating a further source of error, perhaps due to the thickness of the deposit. However, in all cases, correction of the lead results did not greatly affect the overall percentage of samples where the XRF result was within 25% of the ICP result, although it did improve the overall accuracy of the results. The GSP, IOM and Button samplers are suitable candidates for further evaluation as compatible with on-site XRF analysis for lead and other metals. It is important to check carefully factory pre-set instrument calibrations, as a bias in the calibration for copper was observed.  相似文献   

8.
Endotoxin is a toxic, pro-inflammatory compound that has been detected in indoor air and dust in homes and occupational settings, and also in outdoor air. Data on the outdoor sampling of endotoxin are limited. Currently, little is known about the seasonal variation and influence of temperature on outdoor endotoxin levels. In the present study, we report endotoxin levels in fine fraction particulate matter with a 50% aerodynamic cutoff diameter of 2.5 microm (PM2.5) and describe the seasonal variation of endotoxin in Munich, Germany. In 1999-2000, PM2.5 was collected at forty outdoor monitoring sites across Munich. Approximately four samples were collected at each site for a total of 158 samples. Endotoxin concentrations in the PM2.5 samples were determined using the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. The geometric mean endotoxin concentration was 1.07 EU mg PM2.5(-1) (95% C.I.: 0.915-1.251) or 0.015 EU m(-3) of sampled air (95% C.I.: 0.013-0.018). Munich endotoxin levels were significantly related to ambient temperature (p < 0.0001) and percent relative humidity (p < 0.0001). Sampling periods with higher average temperatures yielded higher levels of endotoxin in PM2.5 (r = 0.641), whereas decreases in percent relative humidity were associated with increased endotoxin levels in PM2.5 (r = -0.388). Endotoxin levels were significantly higher during the warmer seasons of spring [means ratio (MR): 2.5-2.7] and summer (MR: 2.1-3.0) than during winter. Although temperature and relative humidity do not explain all of the variability in endotoxin levels, their effects were significant in our data set. Temperature effects and seasonal variation of endotoxin should be considered in future studies of outdoor endotoxin.  相似文献   

9.
Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass, which encompassed the permissible exposure limit of 150 mg m(-3) enforced in the USA by the Mine Safety and Health Administration (MSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects from the presence of iron and zinc in the samples. An approximately 10% negative bias was found for the slope of the Button sampler regression, in line with other studies, but it did not significantly affect the accuracy as all XRF results from this sampler were within 20% of the corresponding ICP values. As in previous studies, the best results were obtained with the GSP sampler using the average of three readings, with all XRF results within 20% of the corresponding ICP values and a slope close to 1 (0.99). Greater than 95% of XRF results were within 20% of the corresponding ICP values for the closed-face 37 mm cassette using the OSHA algorithm, and the IOM sampler using a sample area of 3.46 cm2. As in previous studies, considerable material was found on the interior walls of all samplers that possess an internal surface for deposition, at approximately the same proportion for all samplers. At the lead-acid battery recycler all five samplers in their optimal configurations gave good correlations (r2 > 0.92) between the two analytical methods over the entire range of found lead mass, which included the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations (except for the Button sampler), indicating an absence of matrix effects from the presence of the smaller quantities of the other metals in the samples. A negative bias was found for the slope of the button sampler regression, in line with other studies. Even though very high concentrations of lead were encountered (up to almost 6 mg m(-3)) no saturation of the detector was observed. Most samplers performed well, with >90% of XRF results within +/- 25% of the corresponding ICP results for the optimum configurations. The OSHA algorithm for the CFC worked best without including the back-up pad with the filter.  相似文献   

10.
In the absence of methods for determining particle size distributions in the inhalable size range with good discrimination, the samples collected by personal air sampling devices can only be characterized by their total mass. This parameter gives no information regarding the size distribution of the aerosol or the size-selection characteristics of different samplers in field use conditions. A method is described where the particles collected by a sampler are removed, suspended, and re-deposited on a mixed cellulose-ester filter, and examined by optical microscopy to determine particle aerodynamic diameters. This method is particularly appropriate to wood dust particles which are generally large and close to rectangular prisms in shape. Over 200 wood dust samples have been collected in three different wood-products industries, using the traditional closed-face polystyrene/acrylonitrile cassette, the Institute of Occupational Medicine inhalable sampler, and the Button sampler developed by the University of Cincinnati. A portion of these samples has been analyzed to determine the limitations of this method. Extensive quality control measures are being developed to improve the robustness of the procedure, and preliminary results suggest the method has an accuracy similar to that required of National Institute for Occupational Safety and Health (NIOSH) methods. The results should provide valuable insights into the collection characteristics of the samplers and the impact of these characteristics on comparison of sampler results to present and potential future limit values. The NIOSH Deep South Education and Research Center has a focus on research into hazards of the forestry and associated wood-products industry, and it is hoped to expand this activity in the future.  相似文献   

11.
Portable X-ray fluorescence (XRF) technology may provide faster turn-around without compromising accuracy when assessing personal exposures to metals such as lead, but it has only been tested in limited field environments. This study is part of a series, where various types of sampler are used to collect airborne lead in different environments for presentation to a portable XRF analyzer. In this case personal samples were taken at a manufacturer of solder alloys consisting mainly of lead and tin, using the closed-face 37 mm cassette (CFC), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. Following XRF analysis the samples were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP). The internal surfaces of CFC's and 25 mm open-face cassettes were also wiped, and the wipes analyzed for lead to assess wall-losses in these two samplers. Analysis of all elements present is useful to ascertain contributions to matrix interference effects. In addition to lead, other metals such as tin, copper, iron, silver, cadmium and antimony were also detected in some or all of the samples by ICP analysis, but only copper and iron could be determined using the XRF analyzer under test. After the removal of a few outliers, all five samplers gave good correlations (r(2) > 0.9) between the two analytical methods over the entire range of found lead mass, which encompassed both the action level and the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects, particularly from tin, which was the most common element after lead. The average of three XRF readings across filters from the GSP samplers gave the best results with 96.7% of results within +/-25% and 100% within +/-30% of the associated ICP values. Using the center reading only was almost as good with 90.0% of results within +/-25% and 96.7% within +/-30% of the associated ICP values, and results can be obtained faster with a single reading. The use of an algorithm developed by OSHA for three readings from the CFC filter samples gave the next best results with 93.3% of XRF results within +/-25% of the corresponding ICP values. However, analysis of wipes from the interior of the cassettes indicated a substantial loss of sample to the walls, and even larger wall-losses were encountered in the 25 mm open-face cassette. Neither this latter sampler nor the IOM or button sampler met the 95% criterion, even for +/-30% accuracy.  相似文献   

12.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   

13.
A new analytical technique based on DRIFTS spectroscopy has been developed for the specific and sensitive determination of size-fractionated wood dust from 37 mm glass fiber filter samples collected with the Respicon sampler. A translational diffuse reflectance apparatus was modified to accept filter samples by incorporating a special filter holder in the sample stage and a clockwork motor to drive the translational stage during infrared scanning, thus providing an average analysis across the filter face. Filter samples were pre-treated with ethyl acetate to uniformly redeposit dust onto the filter and extract potential chemical interferences. Two absorbance maxima (1251 and 1291 cm(-1)), corresponding to the cellulose content of the wood, were suitable for quantitation of wood dust. Analysis of seven species of wood at 1291 cm(-1) showed an equivalent quantitative response for all species except maple. The response at 1251 cm(-1) was more variable across species but more sensitive for the softwoods. There was a statistically significant effect of particle size on the analytical response, so that analytical standards should be matched to the samples in terms of particle size distribution. Analytical limit of detection was approximately 0.08 mg of wood dust per sample with overall precision of about 6%. Comparison of DRIFTS and gravimetric analyses of 51 pure wood dust samples ranging from about 0.2 to 2 mg yielded a slope of 1.08 and r2 equal to 0.9. Other particulate contaminants common in the industrial wood processing industry showed little or no interference with the determination of wood dust by this method.  相似文献   

14.
The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.  相似文献   

15.
The aim of this study was to assess the associations between airborne and dustborne microbial contaminants (endotoxin and β-D-glucan) and estimate the effects of home characteristics on exposure levels of these microbial contaminants. Endotoxin and β-D-glucan concentrations in airborne inhalable particles, airborne PM1 (<1 μm) and vacuumed dust from 184 residential homes were determined using specific Limulus amebocyte assays. Home characteristics were recorded by visual inspection and questionnaires. Linear regression and correlation analyses were performed. Inhalable endotoxin correlated with dust endotoxin (r = 0.34, p < 0.001) and PM1 endotoxin (r = 0.33, p < 0.001). Inhalable β-D-glucan correlated with dust β-D-glucan (r = 0.18, p < 0.01), but not with PM1 β-D-glucan. Significant correlation was also found between PM1 and dust concentrations for endotoxin (r = 0.26, p < 0.001), but not for β-D-glucan. Multivariate regression analyses showed only one significant association between airborne contaminants and environmental characteristics: inhalable β-D-glucan was positively associated with relative humidity with an effect size (change in the dependent variable corresponding to a unit increase in the independent variable) of 2.32 and p < 0.05. In contrast, several associations were found between dust concentrations and environmental characteristics. Dust endotoxin was positively associated with temperature (2.87, p < 0.01) and number of inhabitants (2.76, p < 0.01), whereas dust β-D-glucan was inversely associated with the presence of dogs (-2.24, p < 0.05) and carpet (-3.05, p < 0.01) in the home. In conclusion, dustborne contaminants were more strongly affected by home characteristics than airborne contaminants. Furthermore, even though statistically significant, the correlations between airborne and dustborne contaminants were weak. This indicates that airborne concentrations cannot be reliably predicted based on dustborne concentrations.  相似文献   

16.
Endotoxin exposure is associated with wheeze and asthma morbidity, while early life exposure may reduce risk of allergy and asthma. Unfortunately, it is difficult to compare endotoxin results from different laboratories and environments. We undertook this study to determine if lipopolysaccharide (LPS) extraction efficiency could account for differences among laboratories. We generated and collected aerosols from chicken and swine barns, and corn processing. We randomly allocated side-by-side filter samples to five laboratories for Limulus assay of endotoxin. Lyophilized aliquots of filter extracts were analyzed for 3-hydroxy fatty acids (3-OHFAs) as a marker of LPS using gas chromatography-mass spectrometry. There were significant differences in endotoxin assay and GC-MS (LPS) results between laboratories for all dust types (p < 0.01). Patterns of differences between labs varied by dust type. Relationships between assay and GC/MS results also depended on dust type. The percentages of individual 3-OHFA chain lengths varied across labs (p < 0.0001) suggesting that each lab recovered a different fraction of the LPS available. The presence of large amounts of particle associated LPS and absence of a freezing thawing cycle were associated with lower correlations between LPS and bioactivity, consistent with an absence of Limulus response to cell-bound endotoxin. These data suggest that extraction methods affect endotoxin measurements. The LAL methods may be most suitable when comparing exposures within similar environments; GC-MS offers additional information helpful in optimizing sample treatment and extraction. GC-MS may be of use when comparing across heterogeneous environments and should be considered for inclusion in future studies of human health outcomes.  相似文献   

17.
A high-performance liquid chromatography (HPLC) method for biomonitoring of occupational wood dust exposure based on nasal lavage as a biomonitoring matrix was developed. Gallic acid (GA) was chosen as the indicator compound for oak dust exposure. From the chromatographic profile of ash dust, four peaks were chosen as indicator compounds. Phenolic indicator compounds were analysed by HPLC. Personal dust samples and corresponding nasal lavage samples were collected from 16 workers exposed to oak dust and six to ash dust. The dust concentrations in the workers' breathing zone varied between 0.7 and 13.8 mg m(-3). The indicators revealed the nature of the wood dust inhaled. For the workers who did not use respirators, the correlation between the dust and corresponding indicator compound in their nasal lavage was significant; r2 = 0.59 (n = 12) for oak dust and r2 = 0.58 (n = 6) for ash dust, respectively. Further, the correlation for oak dust workers who used respirators was r = 0.67 (n = 4). Nasal lavage sampling and HPLC analysis of polyphenol indicator compounds are promising tools for measuring wood dust exposure. Although further validation is necessary, determination of the individual dose may prove invaluable in prospective epidemiological studies.  相似文献   

18.
Measurement of environmental endotoxin exposures is complicated by variability encountered using current biological assay methods arising in part from lot-to-lot variability of the Limulus-amebocyte lysate (LAL) reagents. Therefore, we investigated the lot-to-lot repeatability of commercially available recombinant Factor C (rFC) kits as an alternative to LAL. Specifically, we compared endotoxin estimates obtained from rFC assay of twenty indoor dust samples, using four different extraction and assay media, to endotoxin estimates previously obtained by Limulus amebocyte lysate (LAL) assay and amounts of 3-hydroxy fatty acids (3-OHFA) in lipopolysaccharide (LPS) using gas-chromatography mass spectroscopy (GC-MS). We found that lot-to-lot variability of the rFC assay kits does not significantly alter endotoxin estimates in house dust samples when performed using three of the four assay media tested and that choice of assay media significantly altered endotoxin estimates obtained by rFC assay of house dust samples. Our findings demonstrate lot-to-lot reproducibility of rFC assay of environmental samples and suggest that use of rFC assay performed with Tris buffer or water as the extraction and assay medium for measurement of endotoxin in dust samples may be a suitable choice for developing a standardized methodology.  相似文献   

19.
Airborne dust bioaerosols, ammonia and formaldehyde levels were determined inside two different (ventilated and unventilated) wood working shops. Airborne dust was found at mean values of 4.3 and 3.01 mg m(-3). These levels were higher than that recommended by Egyptian environmental law [1 mg m(-3) indoor maximum allowable concentration (MAC) for hard wood]. The highest frequency of aerodynamic size distribution of airborne wood dust was detected at a diametre of 4.9 microm which was recorded during a machining operation. Total viable bacteria were recorded at a mean value of 10(4) colony-forming units (cfu) m(-3), whereas Gram-negative bacteria were found at very low counts (10(1) cfu m(-3)). Fungi levels were recorded at mean values of 10(3) and 10(2) cfu m(-3) in ventilated and unventilated shops, respectively. Penicillium, Aspergillus, Cladosporium and yeast species were dominant isolates. Moreover, actinomycetes were found at a mean value of 10(3) cfu m(-3) at both workshops. Ammonia was detected in relatively low concentrations (mean values of 457 and 623 microg m(-3)), whereas formaldehyde was found in relatively moderate concentrations (mean values of 0.42 and 0.64 ppm).  相似文献   

20.
A study of the equivalence to the reference methods of the Radiello samplers for ozone (O(3)) and benzene as well as the membrane-closed Palmes tube (MCPT) for nitrogen dioxide (NO(2)) is presented. These samplers benefit from new model equations capable of estimating their uptake rate. For O(3), the aim here was to demonstrate the equivalence for the reference period of 8 h and 120 microg m(-3), the target value of the 3rd European Daughter Directive. For benzene, the demonstration of equivalence to the annual limit value of 5 microg m(-3) of the 2nd European Daughter Directive was examined. In the case of NO(2), the equivalence to the annual limit value of the 1st European Daughter Directive (40 microg m(-3)) was considered. Results show that the radial sampler for O(3) fails to meet the Data Quality Objective (DQO) for continuous monitoring. However, with an expanded uncertainty of less than 30%, the O(3) diffusive sampler fulfils the DQO for indicative measurements. For benzene, the Radiello sampler exposed for 7 days gave satisfying results showing the ability of the sampler to meet the DQO of the reference method. Nevertheless, the field tests should be complemented by measurements for a wider range of benzene concentrations. In the case of NO(2), all the results of the laboratory and field experiments respected the requirements necessary for the demonstration of equivalence. Overall, these findings thus show that the Radiello sampler and the MCPT are equivalent to the reference methods only for assessment of benzene and NO(2), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号