首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is a potential health concern for communities because many PAHs are known to be mutagenic and carcinogenic. However, information on ambient concentrations of PAHs in communities is very limited. During the Urban Community Air Toxics Monitoring Project, Paterson City, NJ, PAH concentrations in ambient air PM10 (particulate matter < or = 10 microm in aerodynamic diameter) were measured from November 2005 through December 2006 in Paterson, a mixed-use urban community located in Passaic County, NJ. Three locations dominated by industrial, commercial, and mobile sources were chosen as monitoring sites. The comparison background site was located in Chester, NJ, which is approximately 58 km west/southwest of Paterson. The concentrations of all of the individual PAHs at all three Paterson sites were found to be significantly higher than those at the background site (P < 0.05). The PAH profiles obtained from the three sites with different land-use patterns showed that the contributions of heavier PAHs (molecular weight > 202) to the total PAHs were significantly higher at the industrial site than those at the commercial and mobile sites. Analysis of the diagnostic ratios between PAH isomers suggested that the diesel-powered vehicles were the major PAH sources in the Paterson area throughout the year. The operation of industrial facilities and other combustion sources also partially contributed to PAH air pollution in Paterson. The correlation of individual PAH, total PAH, and the correlation of total PAHs with other air co-pollutants (copper, iron, manganese, lead, zinc, elemental carbon, and organic carbon) within and between the sampling sites supported the conclusions obtained from the diagnostic ratio analysis.  相似文献   

2.
Persistent organic pollutants (PAHs and PCBs) in soil samples from seven sites across the Seine basin were analysed. Samples were taken from industrialized, urban, suburban and remote sites. Results showed spatial differences, in terms of concentrations and congener profiles. PAH (Sigma14 PAHs) and PCB (Sigma 7 PCBs) concentrations ranged from 450 to 5650 microg kg(-1) and 0.09 to 150 microg kg(-1), respectively. A clear gradient from industrial to remote sites was highlighted, with a ratio of up to one order of magnitude for PAHs and two orders of magnitude for PCBs. Fluoranthene and pyrene were predominant, while the carcinogenic PAHs represented 15-46% of the total PAH content. Using hierarchical cluster analysis, soil samples profiles were compared and the influence of site location and potential sources were identified: automobile traffic, domestic heating, and industrial emissions were the prevalent PAHs sources in the Seine basin. PCB profiles suggested different transport patterns among congeners. For remote sites, the congener fingerprint showed a relatively higher proportion of the most volatile congeners, which were attributed to increased atmospheric residence times. Thus, PAH and PCB distributions in soils provided information on sources and evidence for short-range transport, and profiles of compounds reflected differences between regional and local emissions. This study demonstrates that soil sampling can be used to investigate spatial differences in atmospheric inputs of persistent organic pollutants based on differences in the mixtures of compounds, reflecting differences in regional and local atmospheric emissions.  相似文献   

3.
Temporal variations of polycyclic aromatic hydrocarbon (PAH) concentrations in leaves of a Mediterranean evergreen oak, Quercus ilex L., were investigated in order to assess the suitability of this species to biomonitor PAH air contamination. Leaf samples were collected at six sites of the urban area of Naples (Italy) and at a control site in the Vesuvius National Park, in May and September 2001, and in January and May 2002. PAH extraction was conducted by sonication in dichloromethane-acetone and quantification by GC-MS. In winter, leaf total PAH concentrations showed, at all the urban sites, values 2-fold higher than in all the other samplings, reflecting the temporal trend reported for PAH air contamination in the Naples urban area. Moreover, leaf PAH concentrations showed, at all the urban sites, a decrease in May 2002 after the winter accumulation. At the control site leaf PAH concentrations showed lower values and smaller temporal variations than at the urban sites. The findings support the suitability of Q. ilex leaves to monitor temporal variations in PAH contamination. The highest winter concentrations of total PAHs were due to the medium molecular weight PAHs that increased with respect to both low and high molecular weight PAHs. The medium molecular weight PAHs showed the same temporal trend both at the urban and remote sites.  相似文献   

4.
From 1994 to 2003, daily air concentrations of particle-bound polycyclic aromatic hydrocarbons (PAHs) and carbon monoxide (CO) were regularly monitored at two traffic-oriented sampling sites (A and B) in urban Genoa, Italy. The data were used to estimate effects on air quality in real situations due to progressive substitution of EURO-0 vehicles, started in 1993, with less-polluting vehicles (EURO-1, EURO-2), mainly gasoline vehicles with a catalyst. PAH profile classification and diagnostic PAH ratios were used to identify 345 samples of predominantly traffic origin. At both sites, CO and PAH daily concentrations decreased exponentially with time and the apparent half-life values calculated were 6.3 and 5.5 for CO and 3.7 and 3.5 years for PAHs at sites A and B, respectively. At site A, monitored for traffic intensity, multiple regression analyses confirmed that daily PAH and CO concentrations were positively correlated with the number of non-catalytic vehicles estimated to cross this site during sampling and negatively correlated with seasonal variables (air temperature, ozone concentration, relative air humidity). The reduction in air pollution estimated for complete substitution of non-catalytic gasoline vehicles was 89% for BaP, 85% for total PAHs and 69% for CO.  相似文献   

5.
Fang GC  Chang KF  Lu C  Bai H 《Chemosphere》2004,55(6):787-796
The concentrations of polycyclic aromatic hydrocarbons (PAHs) in gas phase and particle bound were measured simultaneously at industrial (INDUSTRY), urban (URBAN), and rural areas (RURAL) in Taichung, Taiwan. And the PAH concentrations, size distributions, estimated PAHs dry deposition fluxes and health risk study of PAHs in the ambient air of central Taiwan were discussed in this study. Total PAH concentrations at INDUSTRY, URBAN, and RURAL sampling sites were found to be 1650 +/- 1240, 1220 +/- 520, and 831 +/- 427 ng/m3, respectively. The results indicated that PAH concentrations were higher at INDUSTRY and URBAN sampling sites than the RURAL sampling sites because of the more industrial processes, traffic exhausts and human activities. The estimation dry deposition and size distribution of PAHs were also studied. The results indicated that the estimated dry deposition fluxes of total PAHs were 58.5, 48.8, and 38.6 microg/m2/day at INDUSTRY, URBAN, and RURAL, respectively. The BaP equivalency results indicated that the health risk of gas phase PAHs were higher than the particle phase at three sampling sites of central Taiwan. However, compared with the BaP equivalency results to other studies conducted in factory, this study indicated the health risk of PAHs was acceptable in the ambient air of central Taiwan.  相似文献   

6.
Temporal and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) concentrations in leaves of Ficus benghalensis were investigated in Varanasi city (India). Leaf samples were collected from six sites from urban area of Varanasi and from a control site. PAH extraction was done by sonication in dichloromethane-acetone and quantification by GC-MS. In January total leaf PAHs concentrations at all the urban sites were twice higher as compared to other season's viz. summer and rainy. In contrast, at the control site leaf PAHs concentrations showed lower values than urban sites. The maximum concentrations of total PAHs in winter were due to the medium molecular weight PAHs which increases with respect to both low and high molecular weight PAHs. The temporal variation of medium molecular weight PAHs was similar both at the urban and remote sites. These results support biomonitoring ability of Ficus benghalensis leaves to temporal variations in PAHs contamination.  相似文献   

7.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

8.
Vapor- and particulate-phase polycyclic aromatic hydrocarbon (PAH) samples were continuously collected at an urban site in Dalian, China, during the heating and non-heating period. There is strong temperature dependence and obvious seasonal trend for atmospheric PAHs, and significant positive correlations of atmospheric PAHs with SO2 and CO concentrations were observed. Factor analysis model with non-negative constraints (FA–NNC) combined with local and literature PAH source fingerprints was successful in source identification of particulate PAHs in the atmospheric samples. The results suggested that, in heating period, the main pollution sources were identified as coal-fired boiler emission (56%), residential coal combustion (33%) and traffic emissions (11%). As for non-heating period, the main sources were gasoline engine emission, traffic tunnel emission and coal-fired power plant, and the overall source contributions of traffic emission (gasoline engine + traffic tunnel) were 79% and coal-fired power plant 21%. The current results support our previous study and provide new insights. This can be the first attempt to quantitatively apportion air organic pollutants using receptor models combined with local source fingerprints. The source fingerprints can be used as reference data for source apportionment of atmospheric PAHs of China.  相似文献   

9.
Fang GC  Wu YS  Fu PP  Yang IL  Chen MH 《Chemosphere》2004,54(4):443-452
The concentrations of gas-phase and particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured simultaneously at an industrial area (Taichung Industrial Park) and a suburban area (Tunghai University Campus) in Taichung, Taiwan. Twenty-four hours samplings for two consecutive days were performed between August and December 2002 at both sampling sites. Ambient air particle-bound PAHs were collected on quartz filters and gas-phase PAHs were collected on glass cartridges using a PUF Sampler, respectively. Both types of samples were extracted with a DCM/n-hexane mixture (50/50, v/v) for 24 h, then the extracts were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Total PAHs concentrations at the Taichung Industrial Park (TIP) sampling site and the Tunghai University Campus (THUC) sampling site were found to be 1232.3+/-963.6 and 609.8+/-356.3 ng/m(3), respectively. Stationary combustion processes were mainly responsible for PAHs sources at the TIP sampling site, while traffic vehicle exhaust was the largest contributor for PAHs sources at the THUC sampling site.  相似文献   

10.
Water samples were collected from wastewater treatment plant (WWTP), drain water (DW), major tributaries (MT), and main course of the Yangtze River (MY) in areas of three industrial parks (IPs) in Chongqing city in the Three Gorges Reservoir (TGR). Sixteen EPA priority polycyclic aromatic hydrocarbon (PAH) pollutants were quantified to identify the effects of industrial activities on water quality of the TGR. The results showed that 11 individual PAHs were quantified and 5 PAHs (naphthalene (Nap), acenaphthylene (Acy), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (InP), and benzo[g,h,i]perylene (BgP)) were under detection limits in all of the water samples. Three-ring and four-ring PAHs were the most detected PAHs. Concentrations of individual PAHs were in the range of not detected (nd) to 24.3 ng/L. Total PAH concentrations for each site ranged from nd to 42.9 ng/L and were lower compared to those in other studies. The mean PAH concentrations for sites WWTP, DW, MT, and MY showed as follows: DW (25.9 ng/L) > MY (15.5 ng/L) > MT (14.0 ng/L) > WWTP (9.3 ng/L), and DW contains the highest PAH concentrations. Source identification ratios showed that petroleum and combustion of biomass coal and petroleum were the main sources of PAHs. The results of potential ecosystem risk assessment indicated that, although PAH concentrations in MT and MY are likely harmless to ecosystem, contaminations of PAHs in DW were listed as middle levels and some management strategies and remediation actions, like strengthen clean production processes and banning illegal sewage discharging activities, etc., should be taken to lighten the ecosystem risk caused by PAHs especially risks caused by water discharging drains.  相似文献   

11.
This study analyzed the seasonal distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric environment of Tamil Nadu, India. Passive air sampling was performed at 32 locations during the period from April 2009 to January 2010, and PAHs were quantified using a gas chromatograph-mass spectrometer. Analysis showed that the concentrations of PAHs were in the range of 5–47.5 ng/m3 with uniform distribution in urban areas in all seasons. Pre-monsoon season showed the highest cumulative concentration of PAHs in both agricultural and coastal areas. Among PAHs, phenanthrene, fluoranthene, and pyrene levels were found to be predominant in all the samples, contributing up to 36%, 35.5%, and 24.5% of total PAHs, respectively. The signature of the PAHs obtained through diagnostic ratio and principal component analysis revealed that diesel emissions was the probable source of PAHs in all locations. Based on Word Health Organization guidelines, the human lung cancer risk due to observed level of PAH concentration (i.e., PAHs exposure) is meager. However, the risk is predicted to be more in the coastal area during summer (18 individuals among 0.1 million people). To the knowledge of these authors, this report is the first on the seasonal analysis of PAHs using passive air sampling in India.  相似文献   

12.
The origin of polycyclic aromatic hydrocarbons (PAH) contamination in bulk atmospheric deposition at two sites of the Seine estuary, one urban and one industrial, has been investigated. The PAH profiles indicate that PAHs mainly have a pyrolytic origin, both in urban and industrial areas. PAH sources vary during the year with an increase of high molecular weight PAH proportions (especially for carcinogenic PAHs) in winter, that means an increase of combustion processes such as domestic heating. Ratios of indicator PAHs (FTH/FTH+PYR and IcdP/IcdP+BghiP) confirm the pyrolytic origin of PAHs. In summer, ratios show the presence of industrial sources. In addition to these two methods, a factor analysis/multiple linear regression model was applied and gave an approximation of PAH source apportionment. PAH were found to be associated predominantly with emissions from road traffic (gasoline and diesel), that accounts for 17-34%. Domestic heating is a very important PAH source in urban areas and accounts for up to 85% of PAHs in winter. Industrial emissions (refineries...) account for 25% in the industrial area in summer. Each is an identified source category for the region and these results are consistent with fly-ashes identified by scanning electron microscopy. This study demonstrates that a combination of source identification methods is a far more efficient than one method alone.  相似文献   

13.

Background

Air samples collected on three different urban sites in East of France (Strasbourg, Besan?on, and Spicheren), from April 2006 to January 2007, were characterized to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the particulate phase (PM10) and to examine their seasonal variation, diurnal variations, and emission sources.

Results

The average concentrations of ??PAHs were 12.6, 9.5, and 8.9?ng?m?3 for the Strasbourg, Besan?on, and Spicheren sites, respectively. Strong seasonal variations of individual PAH concentrations were found at the three sampling sites, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The diurnal variations of PAH concentrations in summer presented highest concentrations during the morning (04:00?C10:00) and the evening (16:00?C22:00) times, indicating the important contribution from vehicle emissions, in the three sampling sites. Furthermore, the ratio of BaP/BeP suggests that the photochemical degradation of PAHs can suppress their concentrations in the midday/afternoon (10:00?C16:00), time interval of highest global irradiance. In winter, concentrations of PAH were highest during the evening (16:00?C22:00) time, suggesting that domestic heating can potentially be an important source for particulate PAH, for the three sampling sites.

Conclusion

Diagnostic ratios were used to identify potential sources of PAHs. Results showed that vehicle emissions may be the major source of PAHs, especially in summer, with a prevalent contribution of diesel engines rather than gasoline engines at the three sites studied, independently of the seasons.  相似文献   

14.
Wang Z  Chen J  Qiao X  Yang P  Tian F  Huang L 《Chemosphere》2007,68(5):965-971
To estimate the distribution and sources of soil polycyclic aromatic hydrocarbons (PAHs) in metropolitan and adjacent areas, soil samples were collected from urban, suburban and rural locations of Dalian, China, and concentrations of 14 PAHs were determined. The spatial PAH profiles were site-specific and determined by the sources close to the sampling sites. PAH concentrations decreased significantly along the urban-suburban-rural transect. The gradient implied that the fractionation effect influenced PAH distribution. Bivariate plots of selected diagnostic ratios showed general trends of co-variation and allowed to distinguish samples taken from different areas. An improved method, factor analysis (FA) with nonnegative constrains, was used to determine the primary sources and contributions of PAHs in soils. The FA model showed traffic average (74%) and coal related residential emission (26%) were two primary sources to Dalian soils. In addition, the FA model provided reasonable explanations for PAH contributions in soils from different sites. The results suggest that FA with nonnegative constraints is a promising tool for source apportionment of PAHs in soils.  相似文献   

15.
Air samples were collected using active samplers at various heights of 8, 15, 32, 47, 65, 80, 102, 120, 140, 160, 180, 200, 240, 280 and 320 m on a meteorological tower in an urban area of Beijing in two campaigns in winter 2006. Altitudinal distributions of polycyclic aromatic hydrocarbons (PAHs) in atmospheric boundary layer of Beijing in winter season were investigated. Meteorological conditions during the studied period were characterized by online measurements of four meteorological parameters as well as trajectory calculation. The mean total concentrations of 15 PAHs except naphthalene of gaseous and particulate phase were 667±450 and 331±144 ng m−3 in January and 61±19 and 29±6 ng m−3 in March, respectively. Domestic coal combustion and vehicle emission were the dominant PAH sources in winter. Although the composition profiles derived from the two campaigns were similar, the concentrations were different by one order of magnitude. The higher concentrations in January were partly caused by higher emission due to colder weather than March. Moreover, weak wind, passing through the city center before the sampling site, picked up more contaminants on the way and provided unfavorable dispersion condition in January. For both campaigns, PAH concentrations decreased with heights because of ground-level emission and unfavorable dispersion conditions in winter. The concentration ratio of PAHs in gas versus solid phases was temperature dependent and negatively correlated to their octanol–air partition coefficients.  相似文献   

16.
This study aimed to characterize air pollution and the associated carcinogenic risks of polycyclic aromatic hydrocarbon (PAHs) at an urban site, to identify possible emission sources of PAHs using several statistical methodologies, and to analyze the influence of other air pollutants and meteorological variables on PAH concentrations.The air quality and meteorological data were collected in Oporto, the second largest city of Portugal. Eighteen PAHs (the 16 PAHs considered by United States Environment Protection Agency (USEPA) as priority pollutants, dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were collected daily for 24 h in air (gas phase and in particles) during 40 consecutive days in November and December 2008 by constant low-flow samplers and using polytetrafluoroethylene (PTFE) membrane filters for particulate (PM10 and PM2.5 bound) PAHs and pre-cleaned polyurethane foam plugs for gaseous compounds. The other monitored air pollutants were SO2, PM10, NO2, CO, and O3; the meteorological variables were temperature, relative humidity, wind speed, total precipitation, and solar radiation. Benzo[a]pyrene reached a mean concentration of 2.02 ng?m?3, surpassing the EU annual limit value. The target carcinogenic risks were equal than the health-based guideline level set by USEPA (10?6) at the studied site, with the cancer risks of eight PAHs reaching senior levels of 9.98?×?10?7 in PM10 and 1.06?×?10?6 in air. The applied statistical methods, correlation matrix, cluster analysis, and principal component analysis, were in agreement in the grouping of the PAHs. The groups were formed according to their chemical structure (number of rings), phase distribution, and emission sources. PAH diagnostic ratios were also calculated to evaluate the main emission sources. Diesel vehicular emissions were the major source of PAHs at the studied site. Besides that source, emissions from residential heating and oil refinery were identified to contribute to PAH levels at the respective area. Additionally, principal component regression indicated that SO2, NO2, PM10, CO, and solar radiation had positive correlation with PAHs concentrations, while O3, temperature, relative humidity, and wind speed were negatively correlated.  相似文献   

17.
采用固相萃取(SPE)样品富集前处理技术和气相色谱/质联联用(GC/MS)分析方法,对北方某工业城市给水系统中的多环芳烃类化合物的含量水平进行了研究.结果表明,该城市多环芳烃污染水平较高,但总浓度均未超过城市供水水质标准(CJ/T206-2005)中限值(2μg/L).近郊水库由于受到燃料燃烧产生的多环芳烃的污染,成为该市饮用水中多环芳烃污染的主要来源.传统的混凝-砂滤工艺对多环芳烃有较好的去除效果,总去除率可达55.9%.  相似文献   

18.
An intensive sampling campaign was undertaken in the surroundings of a municipal waste incinerator located in a French great urban centre in order to evaluate the impact of particles emissions on the ambient air and to estimate the exposure levels to toxic or carcinogenic compounds for a population living in the neighbourhood of this incinerator. To minimise the effect of industrial and road activities, sampling was performed during the 2 days of a weekend and on Monday morning. Different operating modes of the incinerator were investigated: (i) normal incinerator functioning and (ii) maintenance activity of the combustion chamber corresponding to the stop and cooling furnace periods. Particulate polycyclic aromatic hydrocarbons (PAHs) and total particulate carbon concentrations were determined in three sites situated, respectively, close to the incinerator, 2 km downwind and 1 km upwind of the plant. In normal operating mode similar concentrations were observed in the three sites. During the furnace stop an increase of total PAH concentrations was observed in the sampling site close to the incinerator. The concentration was 3 times higher than those measured in the other two sampling sites. But this increase was limited in time and in space since this phenomenon is only observed in the vicinity of the incinerator. The study of PAH profiles indicated that Pyrene and Retene showed the highest enhancement of their relative concentrations. The influence of incinerator functioning parameters on the PAHs concentrations is discussed. The furnace temperature and the mode of exhaust fumes seem to be deciding parameters to explain the increase of PAH level in the incinerator site. However, the incinerator emissions remained a minor part of the atmospheric pollution in the urban area.  相似文献   

19.
The Lake Maggiore (Northern Italy) has been recognized as an aquatic environment heavily contaminated by persistent organic pollutants, mainly organochlorine compounds, but to date limited information is available regarding another class of widespread and hazardous pollutants, such as the polycyclic aromatic hydrocarbons (PAHs). The aim of this study was to investigate seasonal and temporal trends of 18 PAHs accumulated in native Dreissena polymorpha specimens during a 5-year biomonitoring program, as well as to identify the possible PAH emission sources by using isomeric diagnostic ratios. Zebra mussels were sampled both in their pre- (May) and post-reproductive (September) stage over the 2008–2012 period in eight sampling stations covering the whole lake shoreline. PAH concentrations were measured through gas chromatography coupled to mass spectrometry. A notable PAH contamination following an increasing temporal trend was noticed in bivalves from all the sampling stations, with the benzo(α)anthracene as the predominant compound. An overall increase in PAH levels was found in the post-reproductive surveys, indicating a marked seasonality of this contamination probably due to the increase in touristic activity during spring–summer months.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) were determined in the ambient air of six towns in N. Greece. This paper presents the variability of the particle-bound PAHs concentrations and the particle PAH content during the cold and the warm months. Correlations of total PAHs with other atmospheric pollutants were largely different among towns indicating that the relative contribution of emission sources is different in each location. In the warm months PAHs were significantly correlated with vehicular pollutants thus suggesting traffic as the major PAH emmitting source. The same was also deduced from the comparison of the ambient PAH profiles to the profiles of particular sources. The contribution of residential heating was significant in most towns during winter. Principal component analysis of the data did not result in a clear distinction between towns thus suggesting that all are influenced by similar source types. Finally, the risk associated with the inhallation of carcinogenic PAHs in each town was estimated and compared to the risk from more urbanized/industrialized sites in N. Greece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号