首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硫化氢气体快速检测方法研究   总被引:7,自引:0,他引:7  
研究了快速监测硫化氢气体的新方法——硫化氢被动式检气管方法。该法是基于气体分子扩散(Fick)定律和化学吸收原理,将检气管内的海棉载体涂渍上对硫化氢有特效的显色剂(缓冲液G和醋酸铅)。测定时,硫化氢通过检气管端口扩散进入管内,在经过载体时,与载体上的显色剂发生反应,从而产生明显的颜色变化(浅黄色变成棕黑色)。检气管显色长度的平方与硫化氢质量浓度及采样时间的乘积在50~1500mg·m-3范围内成线性关系,从而快速监测环境中硫化氢的时间加权平均质量浓度。该检气管集采样与分析为一体,可快速测定硫化氢气体的质量浓度。与传统的采样分析方法比较,该检气管结构简单,操作方便,不受被测环境的空间大小、有无电源等影响;携带方便,利于外出测定和大面积布点测定。经过应用实验表明,该检气管具有较高的灵敏度,达到设计要求。  相似文献   

2.
Low dissolved oxygen (DO) is an energy-saving condition in activated sludge process. To investigate the possible application of limited filamentous bulking (LFB) in sequencing batch reactor (SBR), two lab-scale SBRs were used to treat synthetic domestic wastewater and real municipal wastewater, respectively. The results showed that prolonging low DO aeration duration and setting pre-anoxic (anaerobic) phase were effective strategies to induce and inhibit filamentous sludge bulking, respectively. According to the sludge settleability, LFB could be maintained steadily by adjusting operation patterns. Filamentous bacteria content and sludge volume index (SVI) were likely correlated. SVI fluctuated dramatically within a few cycles when around 200 mL·g-1, where altering operation pattern could change sludge settleability in spite of the unstable status of activated sludge system. Energy consumption by aeration reduced under low DO LFB condition, whereas the nitrification performance deteriorated. However, short-cut nitrification and simultaneous nitrification denitrification (SND) were prone to take place under such conditions. When the cycle time kept constant, the anoxic (anaerobic) to aerobic time ratio was determining factor to the SND efficiency. Similarity keeping aerobic time as constant, the variation trends of SND efficiency and specific SND rate were uniform. SBR is a promising reactor to apply the LFB process in practice.  相似文献   

3.
于英民  孙翔  李春虎 《环境化学》2012,31(12):1985-1989
利用废弃褐煤半焦原料作为炭基材料前驱体,经表面改性处理后制备高效脱硫剂,用于脱除原料气中的少量H2S杂质.经改性处理后,改性半焦的比表面积显著提高,形成丰富的织网结构,灰分和挥发分减少,固定碳含量增加,表面酸/碱性官能团含量也随着改性处理过程发生明显变化.采用固定床反应器和模拟气体考察脱硫剂的脱硫性能,结果表明,原料褐煤半焦基本没有脱除H2S的能力.改性处理后,随着改性半焦物化性质的改善,脱硫能力迅速提高穿透时间达95 min.负载铁氧化物有利于进一步增强其脱硫性能,穿透时间提高到1095 min;温度、氧含量和水含量等因素对脱硫性能的影响也非常显著.  相似文献   

4.
殷逢俊  李多松 《环境化学》2012,31(3):269-277
首先建立了微生物衰减系数和污泥浓度、底物浓度的函数关系式,带入Lawrence-McCarty第一方程式得到了Logistic方程形式的微生物生长方程式.在分析污泥泥龄和污泥停留时间关系基础上,引入Monod方程建立了活性污泥动力学模型,推导证明了Lawrence-McCarty方程式是模型静态条件下的表达形式.用建立的活性污泥动力学模型对完全混合式污泥系统进行了模拟,并分析了水力停留时间Hydraulic retention time(HRT)和污泥停留时间Sludge retention time(SRT)对完全混合式污泥系统的影响,表明模型能很好地对活性污泥系统的动态过程进行模拟.根据模型编程画出了污泥系统相关变量关于HRT和SRT变化的三维曲面图,通过编程将复杂模型看作一定输入输出的函数,使得模型更易于应用和推广.  相似文献   

5.
温度对污泥热解产物及特性的影响   总被引:4,自引:0,他引:4  
温度是污泥热解产物及产物分布状况的主要影响因素之一。为了确定最优的热解温度,为不同的热解工艺提供参考,用直径为200mm的外热式固定床反应器,以唐山西郊污水处理厂剩余污泥为实验物料,在终温为250~700℃并在初期通以氮气的情况下,对污泥的热解产物分布及特性进行了研究。实验表明:在物料成分和其它条件不变的情况下,热解反应所需时间随着热解终温的升高而缩短;热解气和热解焦油的质量分数增大;焦炭质量分数减小。热解焦炭的工业分析表明,随热解终温的升高挥发分减少、固定碳和灰分增加。热解焦油的热值在10~43MJ·kg-1之间;焦炭的热值10~24MJ·kg-1之间。  相似文献   

6.
一株新的反硝化短程除硫菌的鉴定及主要培养因素筛选   总被引:2,自引:0,他引:2  
依据反硝化除硫原理,以味精废水污泥为种泥,利用全混流反应器富集并分离出同步反硝化短程除硫菌(SNBI),采用传统与现代分子生物学相结合的手段对其鉴定,以确定其分类地位;同时对SNB1的主要培养因素(营养和环境)进行筛选.结果表明:SNB1的形态特征及生理生化指标与Thauera selenatis最相似,同源性达99.0%,属短杆菌属,尚无中文命名;生理生化指标、富集条件及富集过程物料平衡显示SNB1是一株兼性厌氧反硝化除硫菌;培养SNB1的最佳碳源为蔗糖,最佳氮源为蛋白胨,最佳培养温度为35℃,最适宜pH范围为7~9;最佳条件培养时,OD_(650)和对数细菌数量(CFU)呈直线相关,相关系数R~2=0.981.  相似文献   

7.
This study evaluated the influence of clinoptilolite on the performance of activated sludge system shocked by high concentration of ammonium. The ammonium and chemical oxygen demand (COD) removal from the experimental reactor containing clinoptilolite and from the clinoptilolite-free control reactor was determined. The ammonium and COD removal was approximately 8 and 20% higher in the experimental reactor than in the control reactor, respectively. The removal increased with an increase in clinoptilolite concentration over the tested range up to 50?mg?L?1. The presence of clinoptilolite resulted in the sludge flocs being more compacted with smoother surfaces and edges. Molecular biological analysis revealed that clinoptilolite increased the DNA diversity, richness, and evenness of sludge microbes. The enhanced-performance activated sludge previously treated with clinoptilolite was less influenced by the shock of ammonium than non-treated sludge in terms of the ammonium and COD removal. These results suggest that clinoptilolite enhanced the performance of activated sludge system in the removal of ammonium and COD. Amendment of activated sludge with natural zeolites may thus improve the efficiency of wastewater treatment.  相似文献   

8.
Hydrogen sulfide (H2S) is an endogenous gaseous molecule, functioning as a physiological regulator. This study aimed to investigate the role of H2S in atherosclerosis. Rabbits receiving high cholesterol were given atorvastatin (10 mg/kg/day, orally) or sodium sulfide (1.1 mg/kg/day, intramuscular) 2 weeks after commencement of high-cholesterol diet and continued for 4 weeks. Serum lipid profiles, lipid peroxidation indexed as malondialdehyde, glutathione, superoxide dismutase, the vascular adhesion molecule-1, and aortic vascular endothelial growth factor were determined. Rabbits receiving a high-cholesterol diet showed elevated levels of total serum cholesterol, triglycerides, low-density lipoprotein cholesterol, malondialdehyde and vascular adhesion molecule-1, and aortic vascular endothelial growth factor expression and lower levels of high-density lipoprotein cholesterol, glutathione, and superoxide dismutase. Treatment with atorvastatin and sodium sulfide has beneficial effects on serum lipid profile, oxidative damage, vascular adhesion molecule-1, and aortic expression of vascular endothelial growth factor.  相似文献   

9.
Hydrogen sulfide emission in sewer systems is associated with toxicity, corrosion, odour nuisance and high costs treatment. In this study, a novel method to inhibit sulfide generation from sewage by means of glutaraldehyde supplementation has been suggested and evaluated under anaerobic conditions. Different concentrations of glutaraldehyde at 10, 15, 20, 30 and 40 mg·L-1 have been investigated. Besides, the possible impacts of glutaraldehyde supplementation on an activated sludge system and an appraisal of the economic aspects are presented as well. As observed from the experimental results, a dosage of 20 mg·L-1 glutaraldehyde resulted in a significant decrease of the sulfide production by 70%–80% in the simulated sewage. Moreover, the impacts of additional glutaraldehyde at 20 mg·L-1 on activated sludge, in terms of chemical oxygen demand removal and oxygen uptake rates, were negligible. From an economical point of view, the cost of the commercial glutaraldehyde products required in the operation, which was calculated on the basis of activated sulfide removal avoidance, was around €3.7–4.6 S·kg-1. Therefore it is suggested that glutaraldehyde supplementation is a feasible technique to abate the sulfide problems in sewer systems. Yet further research is required to elucidate the optimum “booster” dosage and the dosing frequency in situ accordingly.  相似文献   

10.
采用盆栽土培方法,将剩余污泥与供试土壤按质量比为0∶3,1∶2,2∶1和3∶0配比,吊兰和蝴蝶梅栽培幼苗,定期测定植物的株高、根长、干重、鲜重等生物量和叶绿素与根活力变化,以及植物体内Cu、Zn、Cd、Pb和Cr等的重金属含量变化;测定种植前后植物根系旁污泥中的重金属含量和重金属的EDTA提取含量等结果表明,吊兰对多种重金属具有很好的耐性,受重金属影响不大.吊兰对Cr和Zn的富集效果较好,对Cr的富集系数在某个特定的生长期是大于1,且它对Zn的富集效果较稳定,不易受重金属浓度的影响.由于吊兰具有生物量大、根系发达、生物量增长迅速等优点,其有利于被重金属污染的土壤改良.而蝴蝶梅因为根系不发达和生物量较小等原因,对重金属的耐性不强,生长中易受重金属影响,因此不宜用于修复污染土壤的植物.图9,表5,参7.  相似文献   

11.
污泥施用对林地土壤基本性质及酶活性的影响   总被引:4,自引:0,他引:4  
王艮梅  杨丽 《生态环境》2010,19(8):1988-1993
以无锡卢村污水处理厂厌氧消化的脱水污泥为有机肥源,采用土培盆栽试验的方法,研究了不同用量污泥施用后土壤基本性质的变化及对土壤酶活性的影响。试验设计5种处理,污泥施用量和占土质量的比例分别为0(不施污泥的对照处理,CK),30(3%),60(6%),120(12%)和240(24%)g·kg^-1。结果表明,污泥使用提高了土壤中养分元素和有机质的含量;黄棕壤中过氧化氢酶的活性平均比潮土中的高5.2%,随污泥用量的增加潮土中过氧化氢酶活性提高,而黄棕壤中的无明显变化;与对照相比,土壤脲酶活性在两种土壤上分别增加55.6%~122%(黄棕壤)和46.2%~67.5%(潮土),且与土壤全氮、全磷、水解氮、速效磷和有机质(黄棕壤)和土壤全氮、水解氮和有机质(潮土)呈正相关;结果还显示污泥使用增加了土壤蔗糖酶活性,但不同污泥用量之间无明显差异。  相似文献   

12.
A two-stage BTF system was established treating odorous off-gas mixture from a WWTP. The two-stage BTF system showed resistance for the lifting load of H2S and VOSC. Miseq Illumina sequencing showed separated functional microbial community in BTFs. Avoiding H2S inhibition and enhancement of VOSC degradation was achieved. Key control point was discussed to help industrial application of the system. Simultaneous removal of hydrogen sulfide (H2S) and volatile organic sulfur compounds (VOSCs) in off-gas mixture from a wastewater treatment plant (WWTP) is difficult due to the occasional inhibitory effects of H2S on VOSC degradation. In this study, a two-stage bio-trickling filter (BTF) system was developed to treat off-gas mixture from a real WWTP facility. At an empty bed retention time of 40 s, removal efficiencies of H2S, methanethiol, dimethyl sulfide, and dimethyl disulfide were 90.1, 88.4, 85.8, and 61.8%, respectively. Furthermore, the effect of lifting load shock on system performance was investigated and results indicated that removal of both H2S and VOSCs was slightly affected. Illumina Miseq sequencing revealed that the microbial community of first-stage BTF contained high abundance of H2S-affinity genera including Acidithiobacillus (51.43%), Metallibacterium (25.35%), and Thionomas (8.08%). Analysis of mechanism demonstrated that first stage of BTF removed 86.1% of H2S, mitigating the suppression on VOSC degradation in second stage of BTF. Overall, the two-stage BTF system, an innovative bioprocess, can simultaneously remove H2S and VOSC.  相似文献   

13.
Removal of selenate in saline wastewater by activated sludge was examined. Sequencing batch reactor was operated under alternating anoxic/oxic conditions. Above 97% removal of soluble selenium (Se) was achieved continuously. Major Se removal mechanism varied depending on the length of aeration period. Various Se-reducing bacteria likely contributed to coordinately to Se removal. Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.  相似文献   

14.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

15.
• The NPs aggregation in the electrolyte solution is consistent with the DLVO theory. • In NaNO3 and low Ca(NO3)2, EPS alleviates the NPs aggregation by steric repulsion. • In high Ca(NO3)2, EPS accelerates the NPs aggregation by exopolysaccharide bridging. • Ag2S NPs have stronger stability compared with Cit-Ag NPs in aqueous systems. Extracellular polymeric substances (EPS) in activated sludge from wastewater treatment plants (WWTPs) could affect interactions between nanoparticles and alter their migration behavior. The influence mechanisms of silver nanoparticles (Ag NPs) and silver sulfide nanoparticles (Ag2S NPs) aggregated by active EPS sludge were studied in monovalent or divalent cation solutions. The aggregation behaviors of the NPs without EPS followed the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The counterions aggravated the aggregation of both NPs, and the divalent cation had a strong neutralizing effect due to the decrease in electrostatic repulsive force. Through extended DLVO (EDLVO) model analysis, in NaNO3 and low-concentration Ca(NO3)2 (<10 mmol/L) solutions, EPS could alleviate the aggregation behaviors of Cit-Ag NPs and Ag2S NPs due to the enhancement of steric repulsive forces. At high concentrations of Ca(NO3)2 (10‒100 mmol/L), exopolysaccharide macromolecules could promote the aggregation of Cit-Ag NPs and Ag2S NPs by interparticle bridging. As the final transformation form of Ag NPs in water environments, Ag2S NPs had better stability, possibly due to their small van der Waals forces and their strong steric repulsive forces. It is essential to elucidate the surface mechanisms between EPS and NPs to understand the different fates of metal-based and metal-sulfide NPs in WWTP systems.  相似文献   

16.
污泥超声破解效应及厌氧消化性能研究   总被引:6,自引:0,他引:6  
针对超声破解污泥的可行性进行了实验研究,重点考察了超声频率、比能耗、作用时间等因素对破解效应的影响,探讨了破解污泥的厌氧消化性能。结果表明,超声作用的施加可使污泥固体有效破解,污泥细胞内的活性有机物被释放至水相并形成溶解性有机物,表现为SCODCr的显著增加;采用低频、高比能耗及延长作用时间有利于获取高的SCODCr增加值;污泥在频率25kHz、比能耗2.0W/mL、作用时间30min条件下破解,其厌氧消化累计产气量可从破解前的268mL提高到473mL,相应TCODCr去除率、VS去除率分别从39.1%、33.5%提高至54.3%、61.7%。研究结果表明采用超声破解技术提高污泥的厌氧消化性是可行的。  相似文献   

17.
Sludge digestion is critical to control the spread of ARGs from wastewater to soil. Fate of ARGs in three pretreatment-AD processes was investigated. UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process. The total ARGs concentration showed significant correlation with 16S rRNA gene. The bacteria carrying ARGs could be mainly affiliated with Proteobacteria. Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.  相似文献   

18.
污水处理过程中产生的剩余污泥富含大量的氮磷元素,从剩余污泥中回收磷是解决磷资源日益缺乏的一种有效途径。探寻出剩余污泥中磷的释放规律是实现剩余污泥中磷回收的首要前提。因此,以实际污水处理厂污泥为研究对象,建立污泥停留时间为5d的中试模型系统。通过系统分析5d停留时间的厌氧条件下污泥中污泥浓度、上清液总磷和氨氮浓度的变化情况,为后续的污泥磷回收提供支撑条件。研究结果表明,在中试系统污泥停留时间5d的厌氧条件下,剩余污泥微生物衰亡自溶或被分解,胞内物质释放,从而使固态物质转化为液态,污泥中磷及相关的氮等物质得到了较大的释放,污泥上清液总磷和氨氮质量浓度可分别达到100和40 mg·L^-1以上。所释放出的氮磷浓度足以满足鸟粪石回收氮磷方法所需的最低经济性要求,为污泥进行厌氧消化后采用鸟粪石的方法回收释放的氮磷提供了重要的基础依据。研究中还发现5d停留时间下, SS和VSS都有不同程度的降低,二者分别减少8.34%和10.14%以上,其中VSS的减少量占SS减少量的65%左右。同时,进入厌氧反应系统的初始污泥浓度对于氮磷的释放有着较大的影响,反应系统的SS在6300~7200 mg·L^-1的条件下,磷和氮的单位质量污泥释放量达到最佳,分别达到单位干污泥0.015和0.006 mg·mg^-1。研究结果为剩余污泥中回收氮磷提供了重要的依据。  相似文献   

19.
Although the cytotoxic effects of mercuric chloride (HgCl2) and methylmercury chloride (MeHg) have been extensively studied, the insoluble mercuric sulfide (HgS) has been the subject of fewer studies. Since the traditional Chinese mineral drug, cinnabar (containing >95% HgS) continues to be used as an ingredient for infant sedation, the pharmacological and toxicological effects of HgS need to be clarified. In previous experiments, HgS and cinnabar were shown to be absorbed from the gastrointestinal tract (GIT) and distributed in various tissues including the lungs. Thus, a preliminarily examination of whether HgS might exert any oxidative stress on a mouse lung was undertaken. HgS reduced GSH content and increased lipid peroxidation in the lung. Further studies on the cytotoxic effects and the possible mechanisms of action of HgS were compared with HgCl2 and MeHg in cultured lung fibroblast V79 cells. The results showed that HgS produced cytotoxicity at a concentration (400–1200 µM)in a dependent manner with IC50 of 795.6 µM, as compared to HgCl2 and MeHg, 8.1 µM and 5.9 µM, respectively. In addition, the HgS induced the phenomena of DNA fragmentation, increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential, accompanied by decreased levels of intracellular ATP and GSH and higher lipid peroxidation levels, similar to HgCl2 and MeHg, but with different toxicokinetic properties. These findings provide evidence for understanding the mechanisms underlying the toxic effects of HgS.  相似文献   

20.
The aim of this study was to examine the production of nanoscale ions via the liquid phase reduction method and the effectiveness of the removal of nitrate nitrogen (NO3?–N) as well as measure the products and kinetics of the reactions. The nanoparticles obtained were approximately 50 nm in diameter and the main component was iron (Fe). This custom-made nanoscale Fe was highly positively charged, and reacted rapidly with NO3?–N in oxygen-free and neutral conditions at room temperature. A 90% removal rate was achieved when the reaction occurred for 30 min in simulation sample water with vigorous shaking at 250 r/min at NO3?–N concentrations of 30, 50, 80 or120 mg N/L. The nanometer Fe dosage was maintained throughout the experiment at 4 g/L. A first-order kinetics equation was applied to the obtained experimental data which followed a pseudo first-order reaction. Data demonstrated that the removal of nitrate nitrogen from polluted groundwater using a nanoscale Fe iron was effective and rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号