首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
上海大气颗粒物中溴、碘浓度水平的影响因素   总被引:1,自引:1,他引:0  
统计分析了2008年采样期间大气颗粒物TSP和PM10中溴、碘浓度水平与气象条件和气态污染物SO2、NO2的关系。结果表明,风向为向岸流时,大气中TSP、PM10浓度以及颗粒物中溴、碘的浓度均低于离岸流时的数值;在各气象因素中,影响颗粒物中溴、碘浓度的主要气象因素为风向、气压和气温,风速和相对湿度的影响较小;颗粒物中溴、碘的浓度水平随大气中SO2、NO2浓度的上升而上升,颗粒物中碘与SO2、NO2呈显著正相关,而颗粒物中溴呈较弱的正相关性;当空气质量恶化时,PM10中Br、I浓度增大,而Br/I比值降低,城市大气中污染物质之间的化学反应对颗粒物中Br/I的比值有一定影响。  相似文献   

2.
采集大连市4个大气自动监测点位30dPM2.5和PM10质量浓度小时值的监测数据,通过对每个点位720个有效数据对的统计分析,研究二者质量浓度的相关性及 PM2.5/PM10比值的分布情况,并研究了气象因素对PM2.5与PM10的影响。结果表明,雾使PM2.5PM10浓度都减小,但二者比值也随之降低;强风会使PM10浓度增大,但PM2.5浓度却减小。  相似文献   

3.
广州大学城大气PM_(2.5)质量浓度与影响因素   总被引:5,自引:1,他引:4  
选择广州大学城代表性学生宿舍、教室、食堂等多个室内采样点及几个室外采样点,准确测定各采样点大气中PM2.5的质量浓度,分析各室内和室外采样点大气中PM2.5污染程度及分布特征;根据同步记录的气象数据,分析评价气象因子对大气PM2.5质量浓度的影响。  相似文献   

4.
选择广州大学城代表性学生宿舍、教室、食堂等多个室内采样点及几个室外采样点,准确测定各采样点大气中PM25的质量浓度,分析各室内和室外采样点大气中PM25污染程度及分布特征;根据同步记录的气象数据,分析评价气象因子对大气PM25质量浓度的影响.  相似文献   

5.
2009年8~9月成都市颗粒物污染及其与气象条件的关系   总被引:19,自引:0,他引:19       下载免费PDF全文
对成都市3个不同点位PM2.5和PM10进行了为期30d的连续观测,研究了大气颗粒物浓度的时空分布特征,及其与气象条件的关系.研究表明,观测期间成都市大气颗粒物PM2.5和PM10质量浓度日均值分别为66,94μg/m3,两者浓度变化范围较大,但变化趋势相同.从空间分布来看,大气颗粒物浓度均是熊猫基地>草堂寺>丽都花园,即下风向污染状况最严重,商业繁华地段次之,生活居住区最好;从时间分布来看,大气颗粒物污染最严重出现在9月17~19日,9月5~9日2个时间段,不利的气象因素和污染物的累积是造成该时间段大气颗粒物污染加重的主要原因.PM2.5与PM10质量浓度的相关性为0.93,PM2.5对PM10的贡献较大,两者质量浓度的比值达0.69.气温对大气颗粒物浓度变化没有显著影响;降水以及风速对颗粒物浓度影响较大,主要是对颗粒物的湿清除和促进扩散作用;在一定相对湿度范围内,高湿度条件容易造成大气颗粒物的较重污染.能见度与大气颗粒物浓度呈明显负相关性,且与PM2.5的相关系数大于与PM10的相关系数.  相似文献   

6.
利用TEOM 1405-F和TEOM 1405颗粒物实时监测仪,研究了2013年12月至2014年5月临平地区PM2.5和PM10质量浓度实时变化特征,并结合气象五参数观测资料,对影响大气颗粒物分布特征的因素进行了分析,研究结果发现:冬季PM2.5和PM10的日均质量浓度明显大于春季,冬季PM2.5日均质量浓度范围为17.0 ~ 349.1 μg/m3,PM10日均质量浓度范围为18.8~516.9μg/m3,春季PM2.5日均质量浓度范围为20.4~167.6μg/m3,PM10日均质量浓度范围为38.2 ~243.3μg/m3;通过线性回归分析发现PM25和PM10存在较好的线性关系,说明PM10相对固定的受到PM2.5的影响,且污染物来源稳定;冬季PM2.5和PM10日均质量浓度存在三峰值波动状态,而春季PM2.5和PM10日均质量浓度存在双峰值波动状态;较大的风速、较高的气压和降水对于颗粒物的清除效果明显.  相似文献   

7.
根据毕节市2015年大气污染物浓度和气象因子的监测数据,分析了毕节市区大气污染物SO_2、NO_2、PM10、PM2.5、CO及O_3浓度的月、季和年平均变化特征及其影响因素,并对大气污染物浓度之间以及大气污染物浓度与气象因子之间的相关性进行了分析。结果表明:(1)毕节市区2015年空气质量总体良好,空气质量优良天数占95.1%,主要大气污染物为PM10和PM2.5;(2)大气污染物SO_2、PM10、NO_2、PM2.5、CO的月浓度都呈"V"型单谷变化趋势,而O_3的月浓度则为单峰变化趋势;大气污染物SO_2、PM10、NO_2、PM2.5、CO浓度的季节变化为冬季最高、夏季最低,O_3浓度的季节变化则为春季最高、冬季最低,且季节之间的差异性显著(p0.05);大气污染物PM10和PM2.5的年平均浓度分别超过我国《环境空气质量标准》(GB 3095—2012)中一级标准年平均浓度限值的18.2%和112.4%,SO_2和NO_2的年平均浓度均未超过国家一级标准的年平均浓度限值;(3)大气污染物SO_2、NO_2、CO浓度与颗粒物PM10、PM2.5浓度之间两两呈极显著正相关性(p0.01),其与O_3浓度之间呈极显著负相关性(p0.01);PM2.5浓度与PM10浓度之间呈极显著正相关性,而PM2.5浓度与O_3浓度之间呈显著负相关性,多元线性回归分析得出PM2.5浓度与其他大气污染物浓度之间的拟合方程为:PM2.5=2.718+0.130SO_2+0.747PM10+0.255NO_2-0.077O_3+0.678CO;(4)气压与大气污染物SO_2、NO_2、CO、PM10浓度之间呈显著正相关性,其与O_3浓度之间呈极显著负相关性;温度除与O_3浓度之间呈极显著正相关性外,与其他大气污染物浓度之间呈显著负相关性,且其与O_3浓度的相关性系数最大(r=0.501),说明温度对O_3浓度的影响较大;相对湿度除与CO浓度之间无显著相关性外,与其他大气污染物浓度之间均呈显著性负相关性;风速与O_3浓度之间呈极显著正相关性,其与其他大气污染物浓度之间均呈极显著负相关性。  相似文献   

8.
广州亚运期间鹤山大气颗粒物及碳组分的分析   总被引:1,自引:0,他引:1  
2010年11月广州亚运会期间,在鹤山连续测量了PM10、PM2.5及PM2.5中有机碳(OC)、元素碳(EC)的质量浓度,结合气象数据综合分析了该地区上述各种污染物的污染特征。研究结果表明:鹤山大气颗粒物以PM2.5为主,PM10和PM2.5具有较好的相关性(R2=0.72),其中PM2.5污染较严重;与国内外其他城市相比,鹤山OC、EC质量浓度处于中等偏高水平;OC和EC质量浓度的相关性较差(相关系数R2=0.32),OC/EC质量浓度比值远大于2,说明鹤山大气OC、EC来源较复杂,同时存在严重的二次污染;估算的二次有机碳(SOC)占OC总质量的66.5%。各种气象因素中,风速对污染物的质量浓度影响最大,秸秆燃烧等人类活动对其也有显著影响。  相似文献   

9.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素.  相似文献   

10.
利用苏州市2014年4月18日—5月6日空气质量监测资料,分析了苏州市大气中PM10和PM2.5的小时变化规律、日变化规律及其与温度、风速的气象相关性,研究其在空间上的分布,探讨PM10和PM2.5之间的相关性。结果表明:苏州市大气中PM10每小时质量浓度呈双峰分布,上午8∶00左右和下午20∶00左右出现峰值特征,而PM2.5每小时质量浓度呈单峰分布,只在上午8∶00左右出现峰值。PM10和PM2.5的每日变化规律相似,有周期性且周期为3~4d。在空间分布上,PM10质量浓度从高到低的排列顺序是:商业混合区居民区工业区交通干线远郊区,PM2.5质量浓度为:工业区交通干线居民区商业混合区远郊区。PM10和PM2.5两者之间存在显著相关性。  相似文献   

11.
依据太原市环境空气质量监测数据,采用Daniel趋势检验法,综合污染指数法和回归分析法研究了“十一五”期间太原市的环境质量变化趋势和影响因素.结果表明,从年均浓度值分析来看,除NO2外,SO2和PM10都存在超标现象,长期来看,三种污染物浓度下降趋势明显,这与太原市环境保护行动密切相关.月际间浓度值差异除PM10在春季出现波动外,SO2和NO2均呈现“U”型曲线,这种规律与气象条件密切相关.三种主要大气污染物污染指数都有所下降,但太原市区空气污染仍以SO2和PM10为主,说明烟煤型污染的空气污染特征没有改变.主要大气污染物的空间浓度分布不均与地形和气象特征以及城市布局和污染源排放有直接关系.太原市“十一五”期间大气环境质量整体改善,但形势依然严峻.  相似文献   

12.
为研究城市主干道边的空气污染状况,通过采用自动监测系统,在2007年1月至2月期间,对广州市新港西路两侧以及附近大学校园内的空气质量进行监测,获得了其空气污染物浓度的特征:(1)空气污染水平高,NO2与PM10日均值超标率较高;(2)污染物时空分布不均匀,NO浓度白天通常比夜间高,路边监测点NO小时浓度为校园对照点浓度的3倍左右。同时,分析了污染物浓度与气象条件及主干道交通流量的关系。结果表明:污染物浓度与气象因素之间有较高的多元线性相关性,但与单个因素的相关性不强;路边监测点的NO小时浓度和校园对照点的N0。小时浓度均与车流量有较高的相关系数,而PM10与车流量无显著相关性。综合考虑气象因素与交通流时,多元线性回归方程的复相关系数更高。  相似文献   

13.
沈阳市夏秋季节大气细颗粒物元素浓度及分布特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为获得沈阳市不同功能区细颗粒物元素的浓度和分布特征,于2007年8月21~9月6日,用安德森分级撞击式采样器在沈阳市4个采样点进行大气颗粒物分级采样,并用电感耦合等离子体质谱仪(ICP-MS)对PM1中50种元素进行分析.通过富集因子和经验正交函数分析,讨论了沈阳市夏秋季节细颗粒物中元素的组成及来源.结果表明,沈阳市夏秋季节PM1浓度明显比冬季低,且低于广州、北京等国内城市的浓度,但比青藏高原冰川区的浓度高1个量级以上,也高于意大利热那亚和佛罗伦萨等城市.沈阳市不同功能区PM1的污染程度为铁西工业区>气象局商业居民区>科研所交通餐饮区>棋盘山风景区;富集因子和经验正交函数分析表明,除自然源外,各功能区污染来源有所不同,交通运输、道路扬尘、餐饮业和工业的排放均对PM1有重要贡献.  相似文献   

14.
大气污染控制有效性的评估模型及应用   总被引:5,自引:1,他引:4       下载免费PDF全文
基于小波分析理论及BP神经网络,建立了大气污染控制有效性的评估模型.利用该模型解析天津市污染源排放及气象因素对大气污染物环境浓度的影响.结果表明,SO2浓度波动主要由污染源的季节变化引起,与天气过程有关的短期波动也不容忽视;而PM10浓度波动主要由污染源排放及气象条件的短期变化引起.2002~2003年的气象条件总体上不利于大气扩散,使SO2日均浓度长期分量增加约为3μg/m3;而2004年的气象条件有利于大气扩散,使SO2日均浓度长期分量减小约为5μg/m3.PM10日均浓度长期分量也有类似的规律,2002~2003年的不利气象条件使PM10日均浓度长期分量增高更显著,约为10μg/m3.  相似文献   

15.
北京市冬春季大气颗粒物的粒径分布及消光作用   总被引:7,自引:2,他引:5  
2004年1─5月,在北京市区连续监测了大气环境中ρ(PM10),ρ(PM2.5),ρ(PM1)和ρ(TSP),以及大气能见度、地面气象要素.结果表明:春节期间颗粒物中细粒子所占的比例较高,ρ(PM1)/ρ(PM2.5)为0.81,ρ(PM10)/ρ(TSP)为0.61;而沙尘期其值分别为0.55和0.28.不同粒径的颗粒物质量浓度均呈在明显日变化,其夜间浓度峰值高于早晨交通繁忙时段.根据经验公式,将大气能见度换算为大气消光系数,并导出颗粒物消光系数.结果表明:颗粒物消光系数与颗粒物质量浓度呈显著正相关.进一步定义了颗粒物质量浓度消光比(CEP),用来表征颗粒物的污染特征.统计分析结果表明:当CEP<103时,颗粒物质量浓度很低,PM2.5所占比例较高,代表了有利于污染扩散的气象条件;当CEP>167,颗粒物质量浓度高,但细粒子比(ρ(PM2.5)/ρ(PM10))稳定在0.5~0.7,湿度也稳定在20%~50%,代表了不利于污染扩散的气象条件.   相似文献   

16.
分析和探讨了福州市霾日和非霾日气溶胶PM10和PM2.5污染水平,无论春季或冬季,霾日福州市气溶胶PM10和PM2.5的质量浓度是非霾日的1.6倍;通过对霾日与非霾日的天气形势与及地面气象要素场的分析,揭示了福州市灰霾天气形成原因。为政府用空气扩散能力来对大气污染物排放进行调控,为开展相应的大气污染防治工作提供科学依据。  相似文献   

17.
大气颗粒物是造成城市空气污染的重要原因之一,并已经成为我国北京等大中城市空气污染中的首要污染物.为分析北京市采暖期大气中可吸入颗粒物的污染水平及其气象因素的影响作用,以大气可吸入颗粒物PM0.3,PM3.0,PM5.0为研究对象,于2007~2009年采暖期间在北京市城区设立了93个采样点进行定点采样监测,利用地统计分析工具和指示克里格方法,模拟分析了北京市城区2007~2009年采暖期PM0.3、PM3.0、PM5.0的时空变异性,并建立起可吸入颗粒物浓度与气象条件(风力、温度、湿度)的对应关系,由此分析气象因素对大气颗粒物污染水平的影响程度.结果表明:实验半变异函数符合具有块金值的球状模型;北京城区空气可吸入颗粒物的污染水平自2007年以来污染程度与污染面积均呈减小趋势,影响范围主要集中在西南部,西北次之,近郊区污染重于城区;气象条件是影响可吸入颗粒物污染程度的重要因素,在不同年份不同气象因子对颗粒物的影响是不同的.但另一方面,由于污染原因季节冷暖程度的不同,气象条件对颗粒物浓度的影响有不确定的一面,但仍可找到一些规律.  相似文献   

18.
天津滨海新区秋冬季大气污染特征分析   总被引:14,自引:0,他引:14       下载免费PDF全文
为了解天津滨海新区大气污染物浓度水平和污染来源,2009年9月1日~2010年2月28日对NOx、CO、SO2、O3、PM2.5、PM10进行了连续在线观测,并同步观测了气象要素.结果表明,秋冬季上述污染物最高日均值(秋冬平均值±标准差,O3为日小时均值最大值)分别达到300.7(65.4±52.9)×10-9、7.278(1.324±1.169)×10-6、53(13±12)×10-9、95(28±21)×10-9(体积分数)和287.4(62.3±53.6)μg/m3、1421.4(161.9±136) μg/m3. NOx和SO2秋季低于冬季,O3和PM10反之. CO和PM10相对国家二级标准超标率为2%和38%,PM2.5相对WHO标准(75μg/m3)超标率为31%.季节统计日变化显示CO和NOx为早晚双峰型,SO2为中午的单峰型,O3为午后单峰型,且秋季日变化振幅远大于冬季, PM10为早晚双峰型,但冬季比秋季晚出峰2~3h.除冬季PM10,大气污染物浓度49%~74%的逐日变化由气象要素影响.滨海新区大气污染受局地排放和外源输送共同影响,西南方向气流易造成污染物积累,其次是东北方向,而东和东南气流最有利于污染物扩散;各污染物具体表现为NOx主要受局地源控制;SO2主要受外来输送影响;CO和PM2.5同时受本地源和外来源的共同影响;PM10秋季表现为本地源污染,而冬季为本地源和外来源的共同影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号