首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to examine ozone (O3) deposition over a forest site in the Czech Republic, a low cost eddy flux experiment using slow response ozone and temperature sensors was implemented in July 1993 within the Brdy Mountains. Half-hour 2-Hz ozone and sensible heat measurements made at the Brdy Mountains for 98 days during the period 7 July 1994-20 October 1994 are analyzed and reported. While the Czech Brdy Mountains AOT40 level for the overall 104 day period was 7.6 ppm h (15.1 ppm h for the full 24-h summation), indicating a slight potential for 03 injury, the 1994 summer to autumn'measured forest O3 uptake was 2.4 (+/- 0.9) g m(-2), not unusually high compared to other studies. Average summer midday 03 fluxes and depositidn velocities were -1.0 (+/- 0.6) microg m(-2) s(-1) and 1.1 (+/- 0.7) cm s(-1). and autumn values were -0.36 (+/- 0.4) microg m(-2) s(-1) and 0.7 (+/- 0.5) cm s(-1) respectively. A unique contribution of this study is the first time demonstrated use of slow responding sensors for eddy covariance flux measurements at heights of 20 m above a forest.  相似文献   

2.
Ozone measurements (daily maximum values) from the Aerometric Information Retrieval System database are analyzed for selected sites, during 1980 to 1988, in southeastern USA. Frequency distributions, for most sites during most years, show a typical bell-shaped curve with the higher frequency around the yearly daily maximum ozone mean of about 100 to about 110 microg m(-3) (50-55 ppbv). Abnormal years in ozone concentration may skew the distribution as the mean shifts. A correlation of daily maximum ozone concentrations above 140 microg m(-3) (70 ppbv) between sites shows a division between the sites in the northern protion of the region and those in the southern portion of the region. Variations in ozone levels are well correlated over distances of several hundred kilometers, suggesting that high values are associated with synoptic scale episodes. An ozone exposure analysis also shows higher ozone exposures (250-300 ppm days) in the northerly sites as compared to the southerly sites (150-170 ppm days).  相似文献   

3.
This paper provides results of ozone flux density measurements above a permanent grassland ecosystem as they relate to an establishment of air quality guidelines or standards. Using a resistance analogue, the product of zone concentration measured at a standard measurement height and the conductivity of the atmosphere reflect the maximum possible ozone flux density towards the envelope of the plants. In other words, this product can be regarded as the ozone exposure potential of the atmosphere for plants. It could be shown that ozone concentrations between 100 and 180 microg m(-3) are likely to have a great phytotoxic potential and are more important than concentrations greater than 180 microg m(-3). From the results presented one can deduce that the application of dose-response relationships based on chamber experiments to ambient conditions results in an overestimation of, for example, yield loses. Any guideline or standard has to take into account the influence of the atmospheric conductivity on the absorbed dose of ozone.  相似文献   

4.
Short exposure to ozone depressed photosynthesis in both oat and duckweed at concentrations above 140 microg m(-3) and 300 microg m(-3), respectively. The effect on exposed oat flag leaves was age-dependent, with maximum susceptibility to ozone 10-20 days after emergence of the panicle. In duckweed, photosynthesis was more sensitive to differences in ozone concentration than to differences in duration of exposure.  相似文献   

5.
Spring wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) plants were exposed to simulated ozone (O(3)) episodes (7 h day(-1) for 7 days) at maximum concentrations of 120, 180 and 240 microg m(-3) O(3), in comparison to a charcoal-filtered air control. Fumigations were conducted in four closed chambers placed in a climate room. Exposures took place prior to inoculation of the plants with six different facultative leaf pathogens. On wheat, significant enhancement of leaf attack by Septoria nodorum Berk. and S. tritici Rob. ex Desm. appeared, particularly on the older leaves and at the highest level of O(3). The same was true for Gerlachia nivalis W. Gams et E. Müll/Fusarium culmorum (W.F.Sm.) Sacc. on wheat and net blotch (Drechslera teres (Sacc.) Shoem.) or G. nivalis leaf spots on barley. Disease development was promoted both on leaves with and without visible injury following exposure to O(3). Sporulation of the two Septoria species increased at 120 and 180 microg m(-3) O(3); however, it was reduced to the level of the control, if 240 microg m(-3) were applied. No significant effects of predisposition were observed with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke), the causal agent of spot blotch, neither on wheat nor on barley. Doses and peak concentrations applied in the experiments were in good agreement with measurements of ambient ozone in Southern Lower Saxony, FRG. Six years' ozone data (1984-1989) revealed the annual occurrence of between 3 and 11 ozone episodes with potentially harmful effects on cereals (three or more consecutive 'ozone days' with 8-h means above 80 microg m(-3)). The frequency of ozone episodes followed by weather periods favourable for infections by facultative pathogens was higher in years with low O(3) pollution than in ozone-rich years, and varied between one and five cases per season. The number of ozone days during the main growing season of cereals (1 April until 31 August) varied from 25 in 1984 to 98 in 1989. However, only 7.9% of ozone days during the 6 years examined were concurrent with weather conditions suitable for fungal infections. It is concluded that the majority of leaf infections in the field happens under low-level concentrations of photooxidants.  相似文献   

6.
The lichen species Anaptychia ciliaris, Collema nigrescens, Evernia prunastri, Hypogymnia bitteri, Lobaria pulmonaria, Pseudevernia furfuracea and Usnea rigida s.l. were fumigated with site-relevant concentrations (for Central Europe) of ozone over 80 days (180 microg m(-3) during daytime, 80 microg m(-3) during the night). Chlorophyll fluorescence measurements revealed a significant reduction of Fv/Fm after ozone fumigation in five of the species investigated, indicating severe stress on photosystem II due to ozone. The physiological impairment paralleled our fine structural investigations, revealing a significantly higher percentage of collapsed photobiont cells. This indicates that the effects of ambient ozone concentrations under experimental conditions included biophysical and physiological, as well as structural impairment in the lichens studied.  相似文献   

7.
Khoder MI 《Chemosphere》2002,49(6):675-684
Sulfur dioxide, nitrogen dioxide, particulate sulfate and nitrate, gaseous nitric acid, ozone and meteorological parameters (temperature and relative humidity) were measured during the winter season (1999-2000) and summer season (2000) in an urban area (Dokki, Giza, Egypt). The average particulate nitrate concentrations were 6.20 and 9.80 microg m(-3), while the average gaseous nitric acid concentrations were 1.14 and 6.70 microg m(-3) in the winter and summer seasons, respectively. The average sulfate concentrations were 15.32 microg m(-3) during the winter and 25.10 microg m(-3) during the summer season. The highest average concentration ratio of gaseous nitric acid to total nitrate was found during the summer season. Particulate sulfate and nitrate and gaseous nitric acid concentrations were relatively higher in the daytime than those in the nighttime. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) defined in the text were calculated from the field measurement data. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) in the summer were about 2.22 and 2.97 times higher than those in the winter season, respectively. Moreover, sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) were higher in the daytime than those in the nighttime during the both seasons. The sulfur conversion ratio (Fs) increases with increasing ozone concentration and relative humidity. This indicates that the droplet phase reactions and gas phase reactions are important for the oxidation of SO2 to sulfate. Moreover, the nitrogen conversion ratio (Fn) increases with increasing ozone concentration, and the gas phase reactions are important and predominant for the oxidation of NO2 to nitrate.  相似文献   

8.
The process by which sulphur dioxide is oxidised in atmospheric droplets has been studied in laboratory experiments designed to collect a large amount of chemical data pertinent to the atmospheric situation. Thus the oxidation of sodium sulphite solutions by oxygen, ozone and hydrogen peroxide has been studied at different pH's and temperatures. In all cases the reaction is first order with respect to sulphite ion but the order with respect to oxidant differs. For oxygen the order is zero whereas the order for ozone and hydrogen peroxide is one. Varying the hydrogen ion concentration has little effect on the oxygen reaction rate between pH 6 and 9; the ozone reaction rate is inversely proportional to the square root of the hydrogen ion concentration and the hydrogen peroxide rate is almost directly proportional to the hydrogen ion concentration. These last two observations are very important since in the case of ozone it indicates that the reaction proceeds via a free radical mechanism involving hydroxyl radicals and in the case of hydrogen peroxide it is the only oxidation process of sodium sulphite so far investigated that shows a positive response to the presence of hydrogen ions.The experimental data was used to calculate the rate of sulphate formation in water droplets under atmospheric conditions for each of the three oxidants. If it is assumed that the ozone and hydrogen peroxide gas phase concentrations are initially 50 parts in 109 and 1 part in 109 by volume respectively, then the rates of sulphate formation are equal in cloud water at pH 5.8. Above this pH the ozone reaction is faster and below it the hydrogen peroxide reaction is faster due to the positive catalysis by hydrogen ions; the oxygen rate is unimportant by comparison at all pH's below 7. The rate of hydrogen peroxide reaction is such that substantial amounts of sulphate can still be formed rapidly in water droplets at pH values from 3 to 5, and thus this process will be very important in creating acidity in rainwater.  相似文献   

9.
Young wheat plants were fumigated with 170 microg m(-3) ozone for 3 days, or with 210 microg m(-3) ozone for 7 days, for 7 hours a day. At the end of the fumigation period the plants were inoculated with brown rust (Puccinia recondita f. sp. tritici) uredospores. The development of new uredospore pustules on fumigated and control plants was evaluated as a measure of rust disease potential. The number of pustules on the ozone fumigated plants was greatly reduced in comparison with the number of plants treated with charcoal-filtered air.  相似文献   

10.
The effect of ozone (< 10, 200 or 400 microg m(-3) on hexane- and dichloromethane-soluble components of Picea abies needles was determined by fumigating potted grafts from mature trees. The trees (>55 and 125 years, 2.5 m high), representing six clones of Norway spruce, were fumigated in open-top chambers at two locations in Norway for one growth season. The needles were extracted with hexane and dichloromethane; 142 compounds from the hexane extract and 164 silylated compounds from the dichloromethane extract were analysed by gas chromatography although no identifications were made. The concentration of four of the compounds from the hexane extract changed with ozone dose in a way that made them promising as indicators, but the present analytical method could not verify this possibility. None of the other 302 compounds qualified as a general indicator of ozone stress in Norway spruce, as none changed its concentration with ozone dose consistently in all romets of all clones. Most of the variation in the experiment is mainly attributable to genetic variation and to climate.  相似文献   

11.
水体中酮硝基麝香的臭氧氧化降解研究   总被引:1,自引:0,他引:1  
采用臭氧氧化水体中的酮硝基麝香,考察pH、H2O2等因素对降解程度的影响,结果表明提高初始pH能加快酮硝基麝香的氧化降解,当pH为12时,反应时间1 h,酮硝基麝香几乎完全去除,浓度为2 mol/L和5 mol/L的H2O2存在有利于O3分解生成·OH自由基,使得酮硝基麝香的氧化降解速率加快,当H2O2浓度超过5 mol/L,H2O2会成为·OH的清除剂,降低·OH利用率;无论O3单独作用和O3/H2O2协同作用,酮硝基麝香降解符合准一级动力学规律;酮硝基麝香氧化降解产物包括甲酸、二乙酸和硝酸根等,其中硝基从苯环上脱落降低了硝基麝香对环境的风险.  相似文献   

12.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

13.
采用O3/H2O2法去除水中丁基黄药,考察了H2O2/O3摩尔比、pH值、丁基黄药初始浓度、温度和自由基抑制剂对丁基黄药的去除效果的影响。结果表明,在相同O3投加量下,H2O2量越大,丁基黄药去除率越高。pH值为7~9,温度在293~303 K的范围内,O3/H2O2对丁基黄药都有很高的去除率。碳酸氢根和叔丁醇能在一定程度上降低丁基黄药的降解效率。研究还发现,在O3和H2O2投加量相同的条件下,H2O2多次投加对水中丁基黄药的处理效果明显优于一次性投加。GC/MS分析表明,O3/H2O2氧化丁基黄药氧化产物为羧酸类物质。  相似文献   

14.
采用O3/H2O2法去除水中丁基黄药,考察了H2O2/O3摩尔比、pH值、丁基黄药初始浓度、温度和自由基抑制剂对丁基黄药的去除效果的影响。结果表明,在相同O3投加量下,H2O2量越大,丁基黄药去除率越高。pH值为7~9,温度在293~303 K的范围内,O3/H2O2对丁基黄药都有很高的去除率。碳酸氢根和叔丁醇能在一定程度上降低丁基黄药的降解效率。研究还发现,在O3和H2O2投加量相同的条件下,H2O2多次投加对水中丁基黄药的处理效果明显优于一次性投加。GC/MS分析表明,O3/H2O2氧化丁基黄药氧化产物为羧酸类物质。  相似文献   

15.
In this study, we have examined the relationships between the concentrations of ambient inhalable airborne fungi and pollen with PM10, PM2.5, ozone, organic carbon, selected trace metals (cadmium, copper, lead, and zinc), temperature, and relative humidity. The database was collected in Cincinnati, Ohio, USA, during two consecutive years. Measurements of all environmental variables were performed at the same site continuously 5 days a week except during winter months. The airborne concentrations of biological and non-biological pollutants ranged as follows: total fungi: 184-16 979 spores m(-3); total pollen: 0-6692 pollen m(-3); PM10: 6.70-65.38 microg m(-3); PM2.5: 5.04-45.02 microg m(-3); and ozone: 2.54-64.17 ppb. Higher levels of total inhalable fungi and particulate matter were found during fall and summer months. In contrast, total pollen concentration showed elevated levels in spring. Peak concentrations of ozone were observed during summer and beginning of fall. Our study concluded that several types of inhalable airborne fungi and pollen, particulate matter, and ozone could be positively correlated as a result of the atmospheric temperature influence.  相似文献   

16.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

17.
Investigations using chlorophyll fluorescence induction kinetics provide the parameters Rfd, L, and Ap to characterize different specifications of the photosynthetic system (PS). The application of ozone, with concentrations between 100 microg m(-3) and 2000 microg m(-3) to spruce in closed chambers yields a reduction of Rfd between 6% and 23% for the current year's needles, which indicates a reduced potential photosynthetic capacity. Further measurements on the current year's needles of spruce of the damage classes S0/S1, S2 and S3 show also a reduction of Rfd of between 7% and 14% in 2 successive years. In addition, the parameter L increases for damaged trees by between 11% and 49%, indicating a change of the chlorophyll content and of the internal energy distribution between PSI and PSII. As no effect of L can be observed with ozone fumigation, it is concluded that the change of some specifications of the PS can be simulated well by ozone fumigation (e.g. Rfd) while other specifications cannot (e.g. L).  相似文献   

18.
Four clones of 3-year-old Norway spruce (Picea abies (L.) Karst.), grown on two soils, were from July 1986 to September 1987 exposed to ozone fumigation (50 microg m(-3) as a control, 100 microg m(-3) plus peaks between 130 and 360 microg m(-3) as treatment) and acid mist of pH 3.0 (versus mist pH 5.6 in the control). Climatic conditions, identical for both control and treatment, followed a diurnal and seasonal pattern characteristic of medium high altitudes of the Bavarian Forest, an area affected by the new-type forest decline. Gas-exchange measurements were carried out on the plants from December 1986 until the end of the 14-month's exposure using a series of climate-controlled minicuvettes. ANOVA of the four clones investigated towards the end of the experiment gave hints of a treatment-related depression of the photosynthetic capacity of the previous year's needles (age-class 1986). Within this age-class only one of the clones (11) showed a significant treatment effect, indicating an age-class dependence and a genetic influence of the treatment-related depression of the photosynthetic capacity. The current year's flush was not impaired through the ozone and acid mist exposure. Analysis also revealed clear effects of soil, clone and needle age on photosynthetic parameters.  相似文献   

19.
Comparison of the effects and kinetics of UV photolysis and four advanced oxidation systems (ozone, ozone/hydrogen peroxide, ozone/UV radiation and UV radiation/hydrogen peroxide) for the removal of simazine from water has been investigated. At the conditions applied, the order of reactivity was ozone < ozone/hydrogen peroxide < UV radiation < ozone/UV radiation and UV radiation/hydrogen peroxide. Rate constants of the reactions between ozone and simazine and hydroxyl radical and simazine were found to be 8.7 M-1s-1 and 2.1 x 10(9) M-1s-1, respectively. Also, a quantum yield of 0.06 mol.photon-1 was found for simazine at 254 nm UV radiation. The high value of the quantum yield corroborated the importance of the direct photolysis process. Percentage contributions of direct reaction with ozone, reaction with hydroxyl radicals and direct photolysis were also quantified.  相似文献   

20.
In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号