共查询到20条相似文献,搜索用时 15 毫秒
1.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future. 相似文献
2.
The evaluation of a novel prototype instrument designed for on-site determinations of VOC mixtures found in indoor working environments is described. The instrument contains a miniature multi-stage preconcentrator, a dual-column separation module with pressure-tunable retention capabilities, and an integrated array of three polymer-coated surface acoustic wave sensors. It was challenged with dynamic test-atmospheres of a set of 15 common indoor air contaminants at parts-per-billion concentrations within a stainless-steel chamber under a range of conditions. Vapours were reliably identified at a known level of confidence by combining column retention times with sensor-array response patterns and applying a multivariate statistical test of pattern fidelity for the chromatographically resolved vapours. Estimates of vapour concentrations fell within 7% on average of those determined by EPA Method TO-17, and limits of detection ranged from 0.2 to 28 ppb at 25 degrees C for 1 L samples collected and analyzed in <12 min. No significant humidity effects were observed (0-90% RH). Increasing the chamber temperature from 25 to 30 degrees C reduced the retention times of the more volatile analytes which, in turn, demanded alterations in the scheduling of column-junction-point pressure (flow) modulations performed during the analysis. Reductions in sensor sensitivities with increasing temperature were predictable and similar among the sensors in the array such that most response patterns were not altered significantly. Short-term fluctuations in concentration were accurately tracked by the instrument. Results indicate that this type of instrument could provide routine, semi-autonomous, near-real-time, multi-vapour monitoring in support of efforts to assess air quality in office environments. 相似文献
3.
It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions. 相似文献
4.
Pegas PN Alves CA Evtyugina MG Nunes T Cerqueira M Franchi M Pio CA Almeida SM Verde SC Freitas MC 《Journal of environmental monitoring : JEM》2011,13(3):657-667
The aim of this study was to evaluate the indoor (I) and outdoor (O) levels of NO?, speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary schools in Lisbon (Portugal) during spring, autumn and winter. Three of these schools were also selected to be monitored for comfort parameters, such as temperature and relative humidity, carbon dioxide (CO?), carbon monoxide (CO), total VOCs, and both bacterial and fungal colony-forming units per cubic metre. The concentration of CO? and bioaerosols greatly exceeded the acceptable maximum values of 1800 mg m?3 and 500 CFU m?3, respectively, in all seasons. Most of the assessed VOCs and carbonyls occurred at I/O ratios above unity in all seasons, thus showing the importance of indoor sources and building conditions in indoor air quality. However, it has been observed that higher indoor VOC concentrations occurred more often in the colder months, while carbonyl concentrations were higher in the warm months. In general, the I/O NO? ratios ranged between 0.35 and 1, never exceeding the unity. Some actions are suggested to improve the indoor air quality in Lisbon primary schools. 相似文献
5.
6.
Sa. Bonetta Si. Bonetta S. Mosso S. Sampò E. Carraro 《Environmental monitoring and assessment》2010,161(1-4):473-483
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings. 相似文献
7.
Juliana V. Teixeira Sandra Miranda Ricardo A. R. Monteiro Filipe V. S. Lopes Joana Madureira Gabriela V. Silva Nazaré Pestana Eugénia Pinto Vítor J. P. Vilar Rui A. R. Boaventura 《Environmental monitoring and assessment》2013,185(1):59-72
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites. 相似文献
8.
Calibration of two passive air sampler configurations for monitoring concentrations of hexabromocyclododecanes in indoor air 总被引:1,自引:0,他引:1
While polyurethane foam (PUF) disk passive air samplers are employed increasingly to monitor persistent organic pollutants in indoor air, they essentially sample only the vapour phase. As a previous investigation of the vapour : particle phase partitioning of hexabromocyclododecanes HBCDs in (outdoor) air reported them to be present largely in the particulate phase, we monitored three offices using active air samplers. In each, approximately 65% of HBCDs were present in the vapour phase, suggesting PUF disk passive samplers are suitable for monitoring HBCDs in indoor air. Concentrations in the three offices (239-359 pg Sigma HBCD m(-3)) exceed substantially those reported in outdoor air from the United States (2.1-11 pg Sigma HBCD m(-3)), but are in line with outdoor air from Stockholm. The relative abundance of the three principal diastereomers in office air was closer to that found in technical HBCD formulations (i.e. predominantly gamma-HBCD) than in most US outdoor air samples. Time integrated air concentrations of alpha-, beta-, and gamma-HBCD were obtained for an office using a low volume sampler operated over a 50 d period alongside PUF disk samplers. This calibration exercise yielded the following passive air sampling rates for both a fully- and part-sheltered PUF disk sampler design: for alpha-, beta-, and gamma-HBCD, 0.87, 0.89, and 0.91 m3 d(-1) respectively (fully-sheltered) and 1.38, 1.54, and 1.55 m3 d(-1) respectively (part-sheltered). Deployment of the part-sheltered configuration yielded concentrations approximately 35% lower than those obtained using a high volume sampler, consistent with PUF disk samplers measuring primarily the vapour phase. 相似文献
9.
Plaisance H Desmettres P Leonardis T Pennequin-Cardinal A Locoge N Galloo JC 《Journal of environmental monitoring : JEM》2008,10(4):517-526
This study examined the performances of a thermal desorbable radial diffusive sampler for the weekly measurement of eight glycol ethers in indoor air and described the results of an application of this method carried out as part of HABIT'AIR Nord - Pas de Calais program for the air monitoring of these compounds in sixty homes located in northern France. The target compounds were the four glycol ethers banned from sale to the public in France since the 1990s (i.e. 2-methoxy ethanol, 2-ethoxy ethanol and their acetates) and four other glycol ethers derivatives of which the use have increased considerably (i.e. 1-methoxy-2-propanol, 2-butoxy ethanol and their acetates).A test program was carried out with the aim of validating the passive sampling method. It allowed the estimation of all the parameters of a method for each compound (calibration, analytical precision, desorption efficiency, sampling rate in standard conditions, detection limit and stability of sample before and after exposure), the examination of the influence of environmental factors on the sampling rate by some exposure chamber experiments and the assessment of the uncertainty of the measurements.The results of this evaluation demonstrated that the method has turned out to be suitable for six out of eight glycol ethers tested. The effect of the environmental factors on the sampling rates was the main source of measurement uncertainty. The measurements done in sixty homes revealed a relative abundance of 1-methoxy-2-propanol that was found in more than two thirds of homes at concentration levels of 4.5 microg m(-3) on average (a maximum value of 28 microg m(-3)). 1-methoxy-2-propanol acetate and 2-butoxy ethanol were also detected, but less frequently (in 19% of homes) and with the concentrations below 12 microg m(-3). The highest levels of these glycol ethers appear to be in relation to the emissions occurring at the time of cleaning tasks. 相似文献
10.
Exposure to environmental tobacco smoke (ETS) is an important worldwide public health issue. The present study demonstrates that cigarette smoke can be a major source of endotoxin (lipopolysaccharide, LPS) in indoor environments. Gas-chromatography/mass-spectrometry was used to determine 3-hydroxy fatty acids as markers of endotoxin in air-borne house dust in homes of smokers and non-smokers. Air concentrations of endotoxin were 4-63 times higher in rooms of smoking students than in identical rooms of non-smoking students. The fact that cigarette smoke contains large amounts of endotoxin may partly explain the high prevalence of respiratory disorders among smokers and may also draw attention to a hitherto neglected risk factor of ETS. 相似文献
11.
The temporal pattern of exposure to a specific compound may affect health in several ways. Exposure to pollution can have short-term effects or long-term effects. For some compounds there is a threshold under which there is no presumed measurable effect, whereas for other compounds, there is no presumed threshold. For short-term effects, the exposure to a high concentration of a compound one day may either increase or decrease the response if values of the same compound become high again the next day. Adaptation to effects of short-term exposure to ozone, for example, is reported. Similarly, health response to sudden high peaks of concentration may also possibly differ in effect from those to peaks attained more gradually. For long-term effects of some compounds, the cumulative exposure may be more decisive in influencing health. This paper proposes and describes in detail several air quality indicators that reflect the time variability and the episodic nature of air pollution exposure, as an attempt to represent the temporal aspects of pollution exposure that may have important effects on health. Mean concentrations, 98th percentile and maximum values are the traditional indicators for estimating exposure. The temporal variability of particulate matter (PM10) and NO2, however, is here described by means of: (1) the rate of change of pollution as the difference between two consecutive hourly or daily values, and of (2) episodes, described in terms of number, duration and inter-episode period, maximum concentration in the episode, and integrated episode exposure. 相似文献
12.
Agrawal A Cronin J Tonazzi J Mark McCleskey T Ehler DS Minogue EM Whitney G Brink C Burrell AK Warner B Goldcamp MJ Schlecht PC Sonthalia P Ashley K 《Journal of environmental monitoring : JEM》2006,8(6):619-624
Beryllium is widely used in industry for its unique properties; however, occupational exposure to beryllium particles can cause potentially fatal disease. Consequently, exposure limits for beryllium particles in air and action levels on surfaces have been established to reduce exposure risks for workers. Field-portable monitoring methods for beryllium are desired in order to facilitate on-site measurement of beryllium in the workplace, so that immediate action can be taken to protect human health. In this work, a standardized, portable fluorescence method for the determination of trace beryllium in workplace samples, i.e., air filters and dust wipes, was validated through intra- and inter-laboratory testing. The procedure entails extraction of beryllium in 1% ammonium bifluoride (NH(4)HF(2), aqueous), followed by fluorescence measurement of the complex formed between beryllium ion and hydroxybenzoquinoline sulfonate (HBQS). The method detection limit was estimated to be less than 0.02 microg Be per air filter or wipe sample, with a dynamic range up to greater than 10 microg. The overall method accuracy was shown to satisfy the accuracy criterion (A< or = +/-25%) for analytical methods promulgated by the US National Institute for Occupational Safety and Health (NIOSH). Interferences from numerous metals tested (in >400-fold excess concentration compared to that of beryllium) were negligible or minimal. The procedure was shown to be effective for the dissolution and quantitative detection of beryllium extracted from refractory beryllium oxide particles. An American Society for Testing and Materials (ASTM) International voluntary consensus standard based on the methodology has recently been published. 相似文献
13.
Acevedo-Bolton V Cheng KC Jiang RT Ott WR Klepeis NE Hildemann LM 《Journal of environmental monitoring : JEM》2012,14(1):94-104
Personal exposure to air pollutants can be substantially higher in close proximity to an active source due to non-instantaneous mixing of emissions. The research presented in this paper quantifies this proximity effect for a non-buoyant source in 2 naturally ventilated homes in Northern California (CA), assessing its spatial and temporal variation and the influence of factors such as ventilation rate on its magnitude. To quantify how proximity to residential sources of indoor air pollutants affects human exposure, we performed 16 separate monitoring experiments in the living rooms of two detached single-family homes. CO (as a tracer gas) was released from a point source in the center of the room at a controlled emission rate for 5-12 h per experiment, while an array of 30-37 real-time monitors simultaneously measured CO concentrations with 15 s time resolution at radial distances ranging from 0.25-5 m under a range of ventilation conditions. Concentrations measured in close proximity (within 1 m) to the source were highly variable, with 5 min averages that typically varied by >100-fold. This variability was due to short-duration (<1 min) pollutant concentration peaks ("microplumes") that were frequently recorded in close proximity to the source. We decomposed the random microplume component from the total concentrations by subtracting predicted concentrations that assumed uniform, instantaneous mixing within the room and found that these microplumes can be modeled using a 3-parameter lognormal distribution. Average concentrations measured within 0.25 m of the source were 6-20 times as high as the predicted well-mixed concentrations. 相似文献
14.
Xiaojiang Ye Zhiwei Lian Chunxiao Jiang Zhaoxia Zhou Huanxin Chen 《Environmental monitoring and assessment》2010,165(1-4):643-651
A field study was carried out in Shanghai metro stations to gather and evaluate information about the real environment. The thermal environment and particulate matter levels were monitored in this study. The mean thermal sensation vote in metro stations was 0.91, and the mean thermal neutral temperature was 20.6°C. Although 92.1% of subjects voted that the thermal environment was acceptable, the condition of air quality in Shanghai metro stations was not good. The mean levels of PM1.0, PM2.5, and PM10 were 0.231 ± 0.152, 0.287 ± 0.177, and 0.366 ± 0.193 mg/m3, respectively. The contribution of PM1.0 to PM2.5 and PM2.5 to PM10 was up to 79% and 76%, respectively. This means that fine particles or ultrafine particles constituted the preponderant part of metro station particulate matter. 相似文献
15.
16.
为研究克拉玛依市空气质量特征,对2015年克拉玛依市空气自动站监测数据进行分析。结果表明,克拉玛依市空气质量整体较为清洁,优良天数占有效监测天数的91.5%,PM_(2.5)平均浓度为31μg/m~3,PM_(10)平均浓度为64μg/m~3,PM_(2.5)在PM_(10)中占比近半;SO_2和NO_2浓度相对不高,NO_2/SO_2比值为2.4,流动源问题相对突出;对各项污染物的综合指数分担率分析发现,克拉玛依市PM_(10)和PM_(2.5)为综合指数分担率最高的因子,不足四分之一,O_3排第三位,超过五分之一,SO_2最低,仅为3.6%。 相似文献
17.
对2014年6月江苏省淮安市秸秆焚烧事件进行分析,研究表明:秸秆焚烧可以导致区域PM2.5、CO、NO2日均浓度分别上升4.2倍、2.9倍、4.4倍。通过对淮安市夏季秸秆焚烧对大气污染程度的分析,提出相应的解决对策,以供环境管理部门提供参考。 相似文献
18.
Solid-phase microextraction (SPME) was studied for the measurement of volatile organic compounds (VOCs) in indoor air. An adsorptive PDMS/Carboxen fibre was used and an analytical methodology was developed in order to overcome competitive adsorption. Kinetics and adsorption isotherms were investigated for different sample volumes and model compounds. In order to evaluate competitive adsorption on the fibre, these compounds were studied alone and in mixture. From the results obtained, the operating conditions allowing co-adsorption of the target compounds were determined: the air sample is enclosed in a 250 mL glass bulb where the SPME fibre is exposed until adsorption equilibrium. This procedure was combined with GC/MS analysis for the identification and quantification of VOCs in indoor air. The performances were determined by using a standard gas containing 10 VOCs representative of indoor environments (acetaldehyde, acetone, BTX, alpha-pinene, trichloroethylene, alkanes). The detection limits were determined in single ion monitoring mode and for a signal to noise ratio of 3. Except acetaldehyde (6 microg m(-3)), they are all below 0.5 microg m(-3). Calibration curves are linear up to 10 micromol m(-3) for all the compounds with good correlation coefficients (above 0.99). The reproducibility ranges from 6 to 12% according to the compound. The methodology was then applied to the comparison of the VOCs content in classrooms of two different schools. 相似文献
19.
Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics. Summertime ΣPAHs on PM was 14.6 ± 29(PM 1.5), 0.88 ± 0.49(PM 1.5-7.2) and 0.29 ± 0.076(PM 7.2) ng m(-3) air while wintertime concentrations were 493 ± 206(PM 1.5), 26.7 ± 14(PM 1.5-7.2) and 5.3 ± 2.5(PM 7.2) ng m(-3) air. Greater than 90% of the carcinogenic PAHs were concentrated on PM(1.5). Dibenzopyrene isomers made up a significant portion (~30%) of the total carcinogenic PAH load during the winter. To our knowledge, this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter. Lifetime risk calculations indicated that 1 out of 10,000 to over 6 out of 100 Beijing residents may have an increased risk of lung cancer due to PAH concentration. Over half of the lifetime risk was attributed to Σdibenzopyrenes. The World Health Organization and Chinese daily PM(10) standard was exceeded on each day of the study, however, PAH limits were only exceeded during the winter. The outcomes of the air pollution metrics were highly dependent on the individual PAHs measured and seasonal variation. 相似文献
20.
Tai-Yi Y 《Journal of environmental monitoring : JEM》2012,14(3):817-829
Spatiotemporal characteristics and impact of ambient air-quality attributed to open burning of rice straw were analyzed and estimated with measured data. Two multivariate analytic methods, factor analysis and cluster analysis, were adopted to analyze the temporal and spatial impact on ambient air-quality during the rice straw burning episode. Temporal features of three scenarios were cited to compare the concentrations for ambient air-quality between the rice straw burning episode and non-episodes over two typical stations by factor analysis. Factor analysis demonstrated that the first rotational component, identified as being highly correlated to the open burning of rice straw, accounts for about 40% of the concentration variance for ambient air-quality. In typical air-quality stations, the average hourly incremental concentrations between the episode and non-episodes were greater than 300 μg m(-3) for PM(10), 1.0 ppm for CO and 35 ppb for NO(2) during the impact of rice straw burning. Factor analysis presented that the first rotated component was highly correlated with several primary pollutants (NO(2), NMHC, PM(10) and CO) during the rice straw burning episode, while every component was only highly correlated with a unique air pollutant during non-episodes. The delineation isopleths indicated that factor analysis could serve as a better method than cluster analysis and provides cross-county cooperation for local governments located in the same separated district during the rice straw burning season. The results of factor analysis revealed that CO is the best index to demonstrate the impact of rice straw burning than the other six air pollutants measured during the episode. Backward trajectory analysis supplied a cause-effect relationship between measured stations and specific rice planted regions during the rice straw burning episode. 相似文献