首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diurnal lipid and mucus production in the staghorn coral Acropora acuminata   总被引:6,自引:0,他引:6  
Net 14C-accumulation into lipids of Acropora acuminata was rapid and increased with light intensity. Dark 14C-incorporation was less than 1% noon maximum. Structural lipids were the first radioactively labelled lipid types showing linear 14C-uptake kinetics. Storage lipids showed non-linear, power-curve kinetics for 14C-uptake. The rate of 14C-incorporation into triglycerides and wax esters was maximal during early afternoon and at midday, respectively. Electron microscopic evidence is given for zooxanthellae being primary sites for synthesis of lipids which are exuded from chloroplasts and transferred to animal tissues. Free lipid droplets and crystalline inclusions (wax ester) were common in animal tissues, the inclusions being often associated with mucus-producing cells. The diurnal rate of mucus production was constant. However, 14C-mucus-lipid production showed a light-dependent diurnal pattern and accounted for 60 to 90% total 14C of mucus during periods of photosynthetically-saturating light. Here, 14C was primarily associated with wax esters which were always present in the mucus-lipid. 14C-triglycerides occur in mucus released only during the day. Lipid and mucus synthesis is discussed in relation to the carbon budget of A. acuminata, in which mucus represented a loss of 40% net C fixation.  相似文献   

2.
Pieces of branch from the staghorn coral Acropora acuminata were incubated with 45CaCl2 and NaH14CO3 under identical conditions in the light or in the dark. Specimens were then processed in different ways. All specimens were placed in N KOH to digest tissues. Some were placed in KOH immediately after incubation; others were placed in KOH after 2 h washing, or after 2 h extraction with methanol-chloroformwater. Specimens were washed in running fresh water or running seawater; some were killed in liquid N2 before washing. Radioactivity associated with skeleton and tissues was determined. The method of processing profoundly affected the results. In dark incubations, there was up to a four-fold difference in apparent skeletal incorporation of 45Ca++ between average values obtained for the different treatments. For 14C incorporation, there was a difference of up to 2.5 times. In light incubations, skeletal incorporation of both radioisotopes showed a two-fold difference between high and low average values obtained for the different treatments.  相似文献   

3.
The growth (extension rate, number of radial branches, skeletal mass, branch diameter) of the␣staghorn coral Acropora formosa (Dana, 1846) was examined at four sites on the Beacon Island platform at Houtman Abrolhos, in subtropical Western Australia (28°S). Sites were at depths of 7 to 11 m, with variable exposure to weather and swell conditions. Two sites on the western reef slope were partly exposed to the oceanic swell, and two sites in the lagoon were largely protected from wave action. Linear extension rate between 1994 and 1995 varied significantly between sites, with greater linear extension at the more protected lagoonal sites. However, accumulation of skeletal mass per branch and number of newly initiated radial branches did not vary significantly between the sites. Carbonate was deposited in similar amounts, but either as porous, rapidly extending branches, or as denser branches which extended more slowly. Branch extension rate over 11.5 mo ranged from a mean of 50.3 mm (range=13 to 93 mm) at a reef slope site to a mean of 76.0 mm (range=31 to 115 mm) at a sheltered lagoonal site. Mean extension rates were almost twice that previously reported for this species in Houtman Abrolhos (37 to 43 mm yr−1) from a shallower site where environmental conditions were apparently sub-optimal. Growth was within the range reported for A. formosa from tropical sites, which is consistent with the relatively high calcification and reef-accretion rates recorded for Houtman Abrolhos in geological and metabolic studies. The role of reduced coral growth-rate in limiting coral reef formation at high latitudes remains equivocal. Received: 19 November 1997 / Accepted: 5 May 1998  相似文献   

4.
Y. Isa 《Marine Biology》1986,93(1):91-101
The skeleton formation in the reef-building coral Acropora hebes (Dana) was ultrastructurally investigated by observing the skeletogenic tissue and the skeleton in the apical portion of the branches. The skeletogenic tissue was made of a layer of tall calicoblastic cells which displayed high exocytotic activities. A number of hollow spherules and tiny vesicles were found in the sub-epithelial space between the calicoblastic cell layer and the skeletal plate. These organic materials appeared to occur in the perinuclear Golgi vesicles in the cells. The energy-dispersive X-ray analysis revealed a calcium element in the osmiophilic granules of the calicoblastic cells, but not in any other cell organelles. As the granules showed no diffraction pattern, it was suggested that they could be a Ca-reservoir in the cells. Crystalline particles were found to deposit on the periphery of the sub-epithelial spherules. The spherules developed to spherular crystals by depositing granulated crystalline particles. Two of the spherules appeared to fuse with each other to form a spindle-shaped crystal. The spherular and spindle-shaped crystals accumulated on the thecal ridge and the lateral side surface of the thecal plate, and seemed to contribute to the elongation and thickening of the thecal plate. The thecal plate exhibited a porous structure which probably originated from an aggregation of the central cores of these crystals. On the surface of the thecal plate more than about 5 m thick, scale-like structures composed of spherular crystal substructures were observed. These observations suggest that mineralization in A. hebes occurs in the extracellular space by elabolating the spherular and spindle-shaped precursor structures and that growth of the corallite is brought about by an aggregation and coalescence of these crystals.  相似文献   

5.
Light profiles beneath the tabular coral species Acropora cytherea and A. hyacinthus were examined at Rib and Broadhurst Reefs, central Great Barrier Reef, in November 1980. They show a strongly decreasing illumination gradient towards the central stem. Beneath tables at 10m deep, which receive about 7.0 mW cm–2 at solar noon, substrate irradiance falls to a minimum of about 5% ambient or to about 0.4 mW cm–2. Thus, from previously reported compensation values, most sub-table substrate may receive above-compensation irradiance. Illumination beneath tables screened by foil is significantly lower. The coral communities beneath tables of these two species plus those of A. subulata and A. clathrata support an average 26 colonies m–2, at a cover of 40%, nearly identical to adjacent, unshaded quadrats. Species richness is likewise very similar. Species richness and colony density beneath the tables increase inwards from the perimeter of the shaded areas, decreasing only near the central stems. Dark adaptation and reduced competitive and grazing pressure are suggested explanations for the latter. It is concluded that shading does not provide a significant competitive advantage for Acropora spp. tables at 10 m deep.  相似文献   

6.
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm−2 h−1 which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm−2 h−1 (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 μM could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm−2 h−1. These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m−2 h−1, P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only ≃11.3% of the nitrogen demand of P.␣damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing). Received: 22 April 1998 / Accepted: 3 November 1998  相似文献   

7.
Abnormal processes of calcification, such as regenerating lesions and neoplasia, situated near the tips(<25 cm) of colonies of Acropora palmata (Lamarck) suppressed normal linear growth. Branches having neoplasia at a larger distance from the tip do not grow significantly differently from controls. This indicates a functional minimal area in terms of energy supply. Neoplasia are pure aragonite and have the same coenosteal structure as regenerative skeletal material. Regeneration of tissue as well as tissue+skeleton lesions involves the simultaneous formation of tissue and regenerative skeleton, trapping foreign material under the regenerated surface. Recovery of a damaged surface slows down with time and this may, in other coral species, result in permanent lesions. A. palmata recovered from all lesions (n=32) within 80 d and appears to be a superior regenerator among Caribbean corals. This is consistent with other life-history characteristics of this highly specialized coral species.  相似文献   

8.
Pocillopora damicornis (Linnaeus) and Montipora verrucosa (Lamarck) were collected from Hawaiian reefs. In two experiments (September 1979-January 1980: ca. 4 mo; August-October 1980; ca. 2 mo), these reef corals were grown under sunlight passed through filters producing light fields of similar quantum flux but different spectral composition. In vitro cultures of symbiotic zooxanthellae (Symbiodinium microadriaticum Freudenthal) from M. verrucosa were cultured under similar conditions for 15 d. Blue or white light promoted more coral skeletal growth than green or red light. In both coral species, blue light increased the total amount of chlorophyll a of the coral-zooxanthellae association. In the perforate species, M. verrucosa, the pigment concentration was elevated by an increase in the density of zooxanthellae, but the pigment concentrations per algal cell remained unchanged; in the non-perforate species, P. damicornis, it appears that pigment concentration was elevated by an increase in pigment per algal cell, and not by an increase in density of zooxanthellae. The sunloving reef-flat coral P. damicornis did not grow as rapidly as the shade-species M. verrucosa at the low quantum flux (about 10% sunlight) provided by the experimental treatments. The in vitro cultures of zooxanthellae from M. verrucosa exhibited growth rates in light of altered spectral quality that correlated with the responses of the host coral species: blue and white light supported significantly greater growth than green light, and red light resulted in the lowest growth rate.Contribution No. 678 of the Hawaii Institute of Marine Biology  相似文献   

9.
P. Dustan 《Marine Biology》1982,68(3):253-264
Zooxanthellae living in colonies of the Caribbean reef coral Montastrea annularis photoadapt to depth-dependent attenuation of submarine light. Studies carried out at Discovery Bay, Jamaica, show that in shallow-living coral colonies, the zooxanthellae appear photoadapted to function at high light intensities, and do poorly if transplanted to low light intensities; in contrast, zooxanthellae in deeper-living coral colonies can be damaged by high light intensities. The adaptation to decreasing light intensity and changing spectral quality appears to be accomplished by increasing the size of the photosynthetic unit (PSU), as opposed to increasing the number of PSU's per cell. Whole cell absorption increases with depth, partially offsetting the loss of light energy due to depth-dependent attenuation. Calculations of photosynthetically usable radiation, the light an alga is capable of absorbing in its own submarine habitat, suggest that the algae at different depths are optimizing rather than maximizing their ability to harvest submarine light energy.  相似文献   

10.
Four colonies of Acropora formosa were incubate with Na2 14CO3 for separate 2 h periods within a 24 h period, and then returned to the reef from which they were collected. Terminal branches were collected at intervals over the following 5 d and analysed for radioactivity associated with the skeleton and certain organic pools. Colonies incubated at night showed little or no loss of fixed radioactivity during the 5 d on the reef. However, 50–60% of photosynthetically-fixed 14C was lost from the terminal branches during the first 40 h on the reef. This loss of radioactivity probably resulted from release of mucus and dissolved organic carbon from the coral tissues. Most of the loss of photosynthetically-fixed 14C was due to decrease in the radioactivity of lipids (80% of the total 14C loss) and methanol-water soluble compounds. Determination of any sequencing in metabolic compartments was made difficult by the rapidity with which 14C dissappeared from most of the metabolic pools measured. 14C was incorporated into the skeleton throughout the 5 d on the reef, although the rate of incorporation was very low in colonies which had been incubated with Na2 14CO3 at night.  相似文献   

11.
Zooxanthellae in different stages of two opposite processes, degradation and proliferation, were found in the planulae of hermatypic corals. The formation of new zooxanthellae is balanced by degraded zooxanthellae in newly released planulae. The number of dividing zooxanthellae and degraded zooxanthellae during the day amounted to approximately 2 to 3% of the standing stock. In settled planulae and particularly in motionless planulae of Stylophora pistillata (Esper, 1797), the degraded zooxanthellae outnumbered proliferous zooxanthellae. The proliferation and degradation of zooxanthellae and the extrusion of degraded remnants of zooxanthellae are significantly phased. Swimming planulae are more autotrophic than motionless planulae. The physiological parameters of settled planulae with exoskeleton are similar to those of adult polyps. The significance of zooxanthella degradation in the vital functions of planulae is discussed. We suggest that the degradation of zooxanthellae in planulae occurs by the digestion of symbionts by host cells. Received: 5 March 1997 / Accepted: 6 August 1997  相似文献   

12.
The usefulness of Fluorinert for the extraction of Acropora formosa polyp tissue and zooxanthellae was demonstrated. The latter remain intact, with no leakage of metabolites, and the polyp tissue can be extracted in a minimal volume. Intact A. formosa and its isolated zooxanthellae were incubated in the light with sodium [14C]bicarbonate for 5 s to 15 min and the kinetics of carbon-14 fixation was determined. The isolated zooxanthellae showed a linear response for carbon fixation, whilst the zooxanthellae in the intact association showed a lag period of 1 to 2 min, containing only 12% of the total fixed carbon in the first 1 min. After 10 min, the distribution of fixed carbon between the symbiotic partners was approximately even and the total carbon fixed was in a range similar to that fixed by the isolated zooxanthellae. A pulse-chase experiment showed rapid movement of fixed carbon from the polyp tissue to the zooxanthellae after the 30 s pulse. The paper discusses two possible explanations for the observed results.  相似文献   

13.
Colonies of the temperate coral Astrangia danae occur naturally with and without zooxanthellae. Basal nitrogen excretion rates of nonsymbiotic colonies increased with increasing feeding frequency [average excretion rate was 635 ng-at N (mg-at tissue-N)-1 h-1]. Reduced excretion rates of symbiotic colonies were attributed to N uptake by the zooxanthellae. Nitrogen uptake rates of the zooxanthellae averaged 8 ng-at N (106 cells)-1 h-1 in the dark and 21 ng-at N (106 cells)-1 h-1 at 200 Ein m-2 s-1. At these rates the zooxanthellae could provide 54% of the daily basal N requirement of the coral if all of the recycled N was translocated. Basal respiration rates were 172 nmol O2 cm-2 h-1 for starved colonies and 447 nmol O2 cm-2 h-1 for colonies fed three times per week. There were no significant differences between respiration rates of symbiotic and nonsymbiotic colonies. N excretion and respiration rates of fed (symbiotic and nonsymbiotic) colonies increased greatly soon after feeding. N absorption efficiencies decreased with increasing feeding frequency. A N mass balance, constructed for hypothetical situations of nonsymbiotic and symbiotic (3×106 zooxanthellae cm-2) colonies, starved and fed 15 g-at N cm-2wk-1, showed that the presence of symbionts could double the N growth rate of feeding colonies, and reduce the turnover-time of starved ones, but could not provide all of the N requirements of starved colonies. Rates of secondary production, estimated from rates of photosynthesis and respiration were similar to those estimated for reef corals.  相似文献   

14.
Multispecies assemblages of the coral genus Acropora occur commonly throughout the Indo-Pacific Ocean. Nine species from such an assemblage comprising 41 species of Acropora, at Big Broadhurst Reef on the Great Barrier Reef, were studied during 1981–1983. Similarities and differences in reproductive modes and timing, oocyte dimensions and fecundity, recruitment by larvae and by fragments, and mortality were recorded. All species had an annual gametogenic cycle, were simultaneous hermaphrodites, and had the same arrangement of gonads in polyps. In six species, most colonies released gametes on the same night of the year, in early summer, during a mass spawning event involving many coral genera. A seventh species had colonies spawning at this as well as other times of the year. Another species spawned in late summer, and gametes were not observed to mature in the last species. Eggs were very large (601 to 728 m geometric mean diameter) and fecundity of polyps low, compared with other corals; no reduction in oocyte numbers occurred during oogenesis. Reef-flat species had slightly bigger and fewer eggs than reef-slope species. All species recruited by larvae, but four also multiplied by fragmentation, either year-round or during occasional rough weather. Yearround fragmenters had few larval recruits; non-fragmenters had many, and a rough-weather fragmenter had an intermediate number of larval recruits. It was concluded that larval recruitment largely determined species composition, and that reduced larval recruitment was responsible for sparse distribution of fragmenting species. Subsequent mortality in some species and increase by fragmentation in others probably determined relative abundances.  相似文献   

15.
The photosynthesis of zooxanthellae in a coral polyp greatly enchances the calcification rate of a coral. However, the white tip of a coral branch is free of zooxanthellae yet still has a very high calcification rate. Furthermore, the reason for the difference is not clear. In this study, the amount of photopigment, total protein (TP), total organic carbon (TOC), ATP, and lipid in polyps from the white tip and brown stalk of a branch of stony coral were measured. Samples of Acropora hyacinthus and A. formosa were collected from southern Taiwan between 1985 and 1987. The results showed that the ATP concentration in polyps of the white tip was much higher than that in polyps of the brown stalk. Conversely, the amount of TP, TOC and measured lipids in polyps of the brown stalk were all higher than those of the white tip. It was the high concentration of ATP in cells that gave these polyp tips the vitality to sustain the energy requirements of such a rapid calification rate. Facilitated diffusion, due to the high metabolite gradient created by cell activity, could be the major driving force for the transport of photosynthetic product from stalk to tip.  相似文献   

16.
Colonies of Acropora microphthalma (Verrill 1869) were transferred from depths of 2 to 3, 10, 20, and 30 m to UV-transparent and UV-opaque respirometry chambers placed at 1 m depth at Bowl Reef, Great Barrier Reef, in March 1989. Peak rates of photosynthesis in colonies originating at 2 and 10 m were unaffected by solar ultraviolet (UV) radiation at 1 m, whereas photosynthesis showed 30 and 38% inhibition in colonies transferred from 20 and 30 m, respectively. This differential sensitivity of corals to UV radiation was consistent with the five- to tenfold higher concentrations of UV-absorbing, mycosporine-like amino acids (MAAs, putative defenses against UV) in 2- and 10-m colonies compared with 20- and 30-m colonies. Photosynthesis in zooxanthellae freshly isolated from 2- and 10-m corals, however, was inhibited by UV, indicating that the host's tissues, which contain 95% of the total MAAs in corals at these depths, are the first line of defense against solar UV and provide protection to their endosymbiotic algae. The general bathymetric decline in the activities of the antioxidant enzyme superoxide dismutase (SOD) in the host, and SOD, catalase, and ascorbate peroxidase in the zooxanthellae, is related to the decrease in potential for photooxidative stress with increasing depth.  相似文献   

17.
Dissolved inorganic nitrogen flux was studied in the giant clam Tridacna gigas and the corals Acropora sp. and Tubastrea micrantha from the tropical reefs of Belau, Micronesia in 1983. T. micrantha, a nonsymbiotic coral, excreted ammonium. However, Tridacna gigas and Acropora sp., which contain symbiotic dinoflagellates (zooxanthellae) were able to take up both ammonium and nitrate. The requirement for a previous light exposure to sustain uptake by T. gigas is reported. The uptake kinetics of these symbioses are described and include the capacity of the zooxanthellae for surge uptake when given nutrient spikes.Contribution No. 417 of the Allan Hancock Foundation  相似文献   

18.
Paired flat plates of the hermatypic coral Montipora verrucosa from Kaneohe Bay, Oahu, Hawaii, were acclimated to photosynthetically active radiation (PAR) only and to full sunlight (PAR+UV) for several weeks in the summer of 1990. After the acclimation period, photosynthesis, both in PAR-only and PAR+UV as well as dark respiration were measured. Levels of the UV-absorbing compounds, S320, density of zooxanthellae, and chlorophyll a concentration were determined. Corals acclimated in PAR+UV had higher levels of the UV-protective compounds and lower areal zooxanthellae densities than corals acclimated in PAR-only. Chlorophyll a per unit volume of coral host and per algal cell did not differ between corals from the two acclimation treatments. Corals acclimated to PAR+UV displayed higher photosynthesis in full sunlight than corals acclimated to PAR-only, but when photosynthesis was measured in the light regime to which the corals had been acclimated, there were no differences in photosynthesis. Dark respiration was the same for corals from the two acclimation treatments regardless of the light quality immediately preceding the dark period.Contribution No. 902 HIMB  相似文献   

19.
In view of their possible involvement in ammonium assimilation in the coral/algal symbiosis, we have purified two distinct glutamate dehydrogenase isoenzymes from the symbiotic dinoflagellate Symbiodinium microadriaticum (Freudenthal) extracted from the staghorn coral Acropora formosa collected from Magnetic Island, North Queensland, Australia, in 1986–1987. An NADPH-specific glutamate dehydrogenase (GDH) displayed biphasic kinetics with respect to ammonium as the variable substrate; at low substrate concentrations the apparent K m was below 1 mM, whereas at high substrate concentrations the corresponding value was approximately 200 mM. The NADPH-GDH displayed extremely low activity in the direction of glutamate oxidation; together with the kinetic data this suggests a probable role in ammonium assimilation. A second (NADH-specific) GDH was found to have both amination and deamination activities, and presumably functions in vivo in glutamate oxidation. Kinetic constants are reported for both GDH isoenzymes.  相似文献   

20.
The genetic structure of populations of the corals Pocillopora damicornis and Acropora palifera was examined in three habitats at One Tree Island during March and April 1993, using electrophoretically detectable variation at six allozyme loci. There were significant genetic differences among populations of P. damicornis within each of the reef crest, lagoon and microatoll habitats. The level of differentiation among populations was similar in each of the habitats. Differences between populations of P. damicornis from lagoon and microatolls were no greater than that within habitats, but genetic differentiation of these from crest populations was much higher. There was no difference in the genetic composition of A. palifera populations within or between the lagoon and microatolls, the only habitats where this species was found. Both coral species had observed:expected (G O:GE) genotypic diversity rations >0.80, indicating predominantly sexual reproduction. These data, the high genotype diversity and general conformance of genotype frequencies to those expected under conditions of Hardy-Weinberg, suggested panmixis at each site. The high degree of sexual reproduction in the P. damicornis populations is unusual for a species where asexual reproduction has been the dominant mode of reproduction reported to date. Gene flow in both species was considerable between the lagoon and the closed microatolls. The genetic differences between populations of P. damicornis in these habitats and the reef crest may reflect the relative isolation of all populations within the closed One Tree Lagoon from those outside. However, local currents appear to offer effective means of dispersal between the habitats, suggesting that the genetic differences result from natural selection in the different environments within One Tree Lagoon and the reef crest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号