首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants—a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.  相似文献   

2.
We used airborne imaging spectroscopy and scanning light detection and ranging (LiDAR), along with bioacoustic recordings, to determine how a plant species invasion affects avian abundance and community composition across a range of Hawaiian submontane ecosystems. Total avian abundance and the ratio of native to exotic avifauna were highest in habitats with the highest canopy cover and height. Comparing biophysically equivalent sites, stands dominated by native Metrosideros polymorpha trees hosted larger native avian communities than did mixed stands of Metrosideros and the invasive tree Morella faya. A multi-trophic analysis strongly suggests that native avifauna provide biotic resistance against the invasion of Morella trees and exotic birds, thus slowing invasion "meltdowns" that disrupt the functioning of native Hawaiian ecosystems.  相似文献   

3.
Abstract: Human land uses surrounding protected areas provide propagules for colonization of these areas by non‐native species, and corridors between protected‐area networks and drainage systems of rivers provide pathways for long‐distance dispersal of non‐native species. Nevertheless, the influence of protected‐area boundaries on colonization of protected areas by invasive non‐native species is unknown. We drew on a spatially explicit data set of more than 27,000 non‐native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non‐native species. The number of records of non‐native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non‐native plants. The number of non‐native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human‐induced disturbance, only the density of major roads outside the protected area significantly increased the number of non‐native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably.  相似文献   

4.
Importance of Reserve Size and Landscape Context to Urban Bird Conservation   总被引:15,自引:1,他引:15  
Abstract:  We tested whether reserve size, landscape surrounding the reserve, and their interaction affect forest songbirds in the metropolitan area of Seattle, Washington (U.S.A.), by studying 29 reserves of varying size (small, medium, large) and surrounding urbanization intensity (urban, suburban, exurban). Larger reserves contained richer and less even bird communities than smaller reserves. These size effects disappeared when we removed the positive correlation of shrub diversity with reserve size, suggesting that greater habitat diversity in large reserves supported additional species, some of which were rare. Standardizing the number of individuals detected among all reserve size classes reversed the effect of size on richness in exurban landscapes and reduced the magnitude of the effect in suburban or urban landscapes. The latter change suggested that richness increased with reserve size in most landscapes because larger areas also supported larger samples from the regional bird species pool. Most bird species associated with native forest habitat (native forest species) and with human activity (synanthropic species) were present in reserves larger than 42 ha and surrounded by >40% urban land cover, respectively. Thus, we recommend these thresholds as means for conserving the composition of native bird communities in this mostly forested region. Native forest species were least abundant and synanthropic species most abundant in urban landscapes, where exotic ground and shrub vegetation was most common. Therefore, control of exotic vegetation may benefit native songbird populations. Bird nests in shrubs were most dense in medium (suburban) and large reserves (urban) and tended to be most successful in medium (suburban) and large reserves (exurban), potentially supplying another mechanism by which reserve size increased retention of native forest species.  相似文献   

5.
Abstract:  Few researchers have investigated the synergistic effects of tropical forest fragmentation and disturbance on species persistence and abundance. We examined effects of both forest-patch metrics and forest disturbance in determining richness and abundance of midsized to large-bodied mammal species in a highly fragmented Amazonian forest landscape. Twenty-one forest fragments, ranging from 2 to 14,480 ha, and two continuous forest sites were sampled based on sightings, tracks, line-transect censuses, armadillo burrow censuses, and camera trapping. Patch occupancy of 37 species recorded ranged from 4% to all forest sites surveyed. Forest fragment size was the strongest predictor of species persistence, explaining 90% of the variation in species richness. Information-theoretic analysis confirmed that fragment area was the most important explanatory variable for the overall species richness and abundance of mammal species, followed by surface fires, which affected the abundance of seven species. Large mammal species were typically absent from fragments <100 ha, whereas some ubiquitous species were favored by fragmentation, exhibiting hyperabundance in small patches. Our findings highlight the importance of large (>10,000 ha), relatively undisturbed forest patches to maximize persistence and maintain baseline abundances of Neotropical forest mammal species.  相似文献   

6.
Abstract: Most protected areas are too small to sustain populations of wide‐ranging mammals; thus, identification and conservation of high‐quality habitat for those animals outside parks is often a high priority, particularly for regions where extensive land conversion is occurring. This is the case in the vicinity of Emas National Park, a small protected area in the Brazilian Cerrado. Over the last 40 years the native vegetation surrounding the park has been converted to agriculture, but the region still supports virtually all of the animals native to the area. We determined the effectiveness of scat‐detection dogs in detecting presence of five species of mammals threatened with extinction by habitat loss: maned wolf (Chrysocyon brachyurus), puma (Puma concolor), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), and giant armadillo (Priodontes maximus). The probability of scat detection varied among the five species and among survey quadrats of different size, but was consistent across team, season, and year. The probability of occurrence, determined from the presence of scat, in a randomly selected site within the study area ranged from 0.14 for jaguars, which occur primarily in the forested areas of the park, to 0.91 for maned wolves, the most widely distributed species in our study area. Most occurrences of giant armadillos in the park were in open grasslands, but in the agricultural matrix they tended to occur in riparian woodlands. At least one target species occurred in every survey quadrat, and giant armadillos, jaguars, and maned wolves were more likely to be present in quadrats located inside than outside the park. The effort required for detection of scats was highest for the two felids. We were able to detect the presence for each of five wide‐ranging species inside and outside the park and to assign occurrence probabilities to specific survey sites. Thus, scat dogs provide an effective survey tool for rare species even when accurate detection likelihoods are required. We believe the way we used scat‐detection dogs to determine the presence of species can be applied to the detection of other mammalian species in other ecosystems.  相似文献   

7.
Abstract:  Since 1960, most of the forest surrounding the La Selva Biological Station, an intensively studied tropical research facility in Costa Rica, has been converted to agricultural uses. We used quantitative censuses and analysis of previously published categorical abundances to assess changes in the bird community, and we evaluated potential causes of species-specific changes by assessing their association with habitat, diet, participation in mixed-species flocks, and nest type. Approximately the same percentage of species increased as decreased in abundance from 1960 to 1999 (10–20% of all species, depending on method of assessment). Diet was the single most important trait associated with declining species. At least 50% of the species that declined have insectivorous diets. Use of forest habitat and participation in mixed-species flocks were also significant factors associated with declines, but nest type was unrelated to change in abundance. The species that increased in abundance tended to occur in open habitats and have omnivorous diets. These results reinforce the importance of several population risk factors associated with tropical understory insectivory and mixed-species flocking: patchy spatial distribution, low population density, large home range, and dietary specialization. La Selva's protected area (1611 ha), despite a forested connection on one boundary with a higher elevation national park, is apparently too small to maintain at least one major guild (understory insectivores). This first quantitative assessment of bird community change at La Selva highlights the need to intensify study of the mechanisms and consequences of biological diversity change in tropical forest fragments.  相似文献   

8.
Abstract:  Biodiversity conservation on agricultural land is a major issue worldwide. We estimated separate and joint effects of remnant native woodland vegetation and recent tree plantings on birds on farms (approximately 500–1000 ha) in the heavily cleared wheat and sheep belt of southern Australia. Much of the variation (>70%) in bird responses was explained by 3 factors: remnant native-vegetation attributes (native grassland, scattered paddock trees, patches of remnant native woodland); presence or absence of planted native trees; and the size and shape of tree plantings. In terms of the number of species, remnant native vegetation was more important than tree planting, in a 3:1 ratio, approximately. Farms with high values for remnant native vegetation were those most likely to support declining or vulnerable species, although some individual species of conservation concern occurred on farms with large plantings. Farm management for improved bird conservation should account for the cumulative and complementary contributions of many components of remnant native-vegetation cover (e.g., scattered paddock trees and fallen timber) as well as areas of restored native vegetation.  相似文献   

9.
Abstract:  Harvesting of wild plants for nontimber uses is widespread in the tropics, but its impact is usually quantified only for one or a few species at a time. Thus, forest managers are never clear about how well their efforts are protecting such plants. We quantified abundance and edge-related variation in 91 species of useful wild plants commonly harvested by communities around Bwindi Impenetrable National Park (BINP), Uganda, to evaluate the effect of their harvest. Forty percent of these species were harvested exclusively for medicines, 22% for weaving, and 24% for other uses. Fourteen percent were harvested for combinations of uses. Plants were surveyed around the entire periphery of the park transects that extended out 1 km into the forest interior from the edge. Analyses of edge and interior distribution were controlled for effects of topography. Individually, nine (10%) species were very rare, occurring in <0.5% of the plots searched. Of the remaining 82 species, most (50%) decreased significantly away from the park boundary, whereas 4.9% increased and 45.1% showed no pronounced edge-related distributions. Rarer species were no more likely to be less abundant near the edge than commoner species. These results suggest that most plants used for nontimber purposes in BINP are not currently being harvested unsustainably. In this respect many of the species of useful wild plants we examined resembled animals commonly hunted in tropical forests for bushmeat because they increased in abundance in disturbed habitat. Conservation action should initially aim to understand what influences distributions of very rare species. Edge-based assessments of distributions may be valuable for revealing harvest impact on species of useful wild plants commonly harvested by people living around forest islands in the tropics.  相似文献   

10.
Abstract: Indigenous tribes and conservation biologists may have common goals and may be able to collaborate on the maintenance of biodiversity, but few researchers have evaluated the impacts and potential benefits of human subsistence activities. I studied the effects of subsistence activities (primarily wood collection) of nomadic pastoralists in 3 Afromontane forests of northern Kenya. In surveys of 404, 25‐m‐radius plots, I recorded vegetation structure and composition of the forest bird community. Plots with higher levels of human activity had significantly different vegetation structure, with more‐open canopies, more grass, and fewer tree stems. Nectarivores (abundance +231%) and aerial insectivores (+66%) were more abundant in plots with more‐intense wood collecting than in plots with less human activity, whereas abundance of forest specialists (?28%) decreased in plots with more‐intense human activity. Abundance of 58% of the bird species either increased or decreased significantly in plots with more‐intense human activity. Generally, the number of individuals of forest specialists decreased (6 of 7 species showed significant responses) and the number of individuals of edge and nonforest species increased with increasing human activity. Canonical correspondence analysis showed that an intensification of human activities would favor nectarivores, aerial insectivores, granivores, and omnivores and would negatively affect large‐sized, ground‐foraging species and arboreal frugivores. Subsistence human activities favored the invasion of forest by edge species at the expense of forest specialists; thus, further intensification of forest exploitation by local peoples is not recommended. At the same time, however, subsistence activities in northern Kenya forests appeared to increase the structural diversity of the vegetation and provided suitable habitat for part (but not all) of the forest avifauna, which suggests that subsistence human activities may have a role in the maintenance of bird diversity.  相似文献   

11.
Long-Term Avifaunal Impoverishment in an Isolated Tropical Woodlot   总被引:3,自引:0,他引:3  
Abstract:  Long-term (>50 years) extinction patterns and processes in isolated tropical forest patches are poorly understood. Considering that forest fragments are rapidly becoming the common feature of most tropical landscapes, data on the long-term conservation value of such fragments are urgently needed. We report on avifaunal turnover in a tropical woodlot (Bogor Botanical Gardens; 86 ha; 54% native and 46% introduced plants; mean 83,649 visitors/month) that has been surveyed several times before and after its isolation in 1936. By 2004 the original avifaunal richness of this woodlot declined by 59% (97 to 40 species) and its forest-dependent avifauna declined by 60% (30 to 12 species). Large-bodied birds were particularly prone to extinction before 1987, but following this time none of the species traits we studied could be considered predictive of extinction proneness. All seven forest-dependent bird species that attempted to colonize this woodlot by 1987 perished thereafter. Our results show that area reduction, isolation, intense human use, and perverse management (e.g., understory removal) of this patch have probably negatively affected the long-term sustainability of its forest avifauna.  相似文献   

12.
Owen-Smith N  Mills MG 《Ecology》2008,89(4):1120-1133
Shifting prey selection has been identified as a mechanism potentially regulating predator-prey interactions, but it may also lead to different outcomes, especially in more complex systems with multiple prey species available. We assessed changing prey selection by lions, the major predator for 12 large herbivore species in South Africa's Kruger National Park. The database was provided by records of found carcasses ascribed to kills by lions assembled over 70 years, coupled with counts of changing prey abundance extending over 30 years. Wildebeest and zebra constituted the most favored prey species during the early portion of the study period, while selection for buffalo rose in the south of the park after a severe drought increased their vulnerability. Rainfall had a negative influence on the proportional representation of buffalo in lion kills, but wildebeest and zebra appeared less susceptible to being killed under conditions of low rainfall. Selection by lions for alternative prey species, including giraffe, kudu, waterbuck, and warthog, was influenced by the changing relative abundance and vulnerability of the three principal prey species. Simultaneous declines in the abundance of rarer antelope species were associated with a sharp increase in selection for these species at a time when all three principal prey species were less available. Hence shifting prey selection by lions affected the dynamics of herbivore populations in different ways: promoting contrasting responses by principal prey species to rainfall variation, while apparently being the main cause of sharp declines by alternative prey species under certain conditions. Accordingly, adaptive responses by predators, to both the changing relative abundance of the principal prey species, and other conditions affecting the relative vulnerability of various species, should be taken into account to understand the interactive dynamics of multispecies predator-prey webs.  相似文献   

13.
The Ring-necked Pheasant ( Phasianus colchicus ) and the Chukar ( Alectoris chukar ) are the dominant avifauna in high-elevation shrubland (2070–3000 m) of Haleakala National Park, Maui, Hawaii. We studied the food habits, ecological niche, and effects of these alien game birds on the native biota in this Hawaiian ecosystem. Analyses of crop contents indicated that pheasant and Chukar consumed predominantly fruits of native, woody dicots (39% and 47% respectively) and leaves (29% and 24% respectively) and flower parts (12% and 17% respectively) of alien, herbaceous dicots. Both species generally selected food items according to their relative availability, although other factors influenced choice of certain items. Invertebrates were a minor component of the game-bird diet, suggesting that their impact on native invertebrate populations is minimal. Pheasant and Chukar occupy, at least partially, an ecological niche once held by now-extinct or rare birds, and they appear not to be significant competitors with the endangered Nene. The role of these alien birds in facilitating seed dispersal and germination of native plant species is beneficial in restoring degraded ecosystems.  相似文献   

14.
The spread of non-native invasive species is affected by human activity, vegetation cover, weather, and interaction with native species. We analyzed data from a 17-year study of the distribution of the non-native Argentine ant (Linepithema humile) and the native winter ant (Prenolepis imparis) in a preserve in northern California (U.S.A.). We conducted logistic regressions and used model selection to determine whether the following variables were associated with changes in the distribution of each species: presence of conspecifics at neighboring sites, distance to development (e.g., roads, buildings, and landscaped areas), proportion of vegetation cover taller than 0.75 m, elevation, distance to water, presence of both species at a site, temperature, and rainfall. Argentine ants colonized unoccupied sites from neighboring sites, but the probability of appearance and persistence decreased as distance to development, vegetation cover, and elevation increased. Winter ants appeared and persisted in sites with relatively high vegetation cover (i.e., highly shaded sites). Presence of the 2 species was negatively associated in sites with high vegetation cover (more winter ants) and sites near development (more Argentine ants). Probability of colonization of Argentine ants decreased where winter ants were most persistent. At sites near development within the preserve, abundant Argentine ant populations may be excluding winter ants. The high abundance of Argentine ants at these sites may be due to immigration from suburban areas outside the preserve, which are high-quality habitat for Argentine ants. In the interior of the preserve, distance from development, low-quality habitat, and interaction with winter ants may in combination exclude Argentine ants. Interactions among the variables we examined were associated with low probabilities of Argentine ant colonization in the preserve.  相似文献   

15.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

16.
The extinction of large herbivores, often keystone species, can dramatically modify plant communities and impose key biotic thresholds that may prevent an ecosystem returning to its previous state and threaten native biodiversity. A potentially innovative, yet controversial, landscape‐based long‐term restoration approach is to replace missing plant‐herbivore interactions with non‐native herbivores. Aldabran giant (Aldabrachelys gigantea) and Madagascan radiated (Astrochelys radiata) tortoises, taxonomically and functionally similar to the extinct Mauritian giant tortoises (Cylindraspis spp.), were introduced to Round Island, Mauritius, in 2007 to control the non‐native plants that were threatening persistence of native species. We monitored the response of the plant community to tortoise grazing for 11 months in enclosures before the tortoises were released and, compared the cost of using tortoises as weeders with the cost of using manual labor. At the end of this period, plant biomass; vegetation height and cover; and adult, seedling, flower, and seed abundance were 3–136 times greater in adjacent control plots than in the tortoise enclosures. After their release, the free‐roaming tortoises grazed on most non‐native plants and significantly reduced vegetation cover, height, and seed production, reflecting findings from the enclosure study. The tortoises generally did not eat native species, although they consumed those native species that increased in abundance following the eradication of mammalian herbivores. Our results suggest that introduced non‐native tortoises are a more cost‐effective approach to control non‐native vegetation than manual weeding. Numerous long‐term outcomes (e.g., change in species composition and soil seed bank) are possible following tortoise releases. Monitoring and adaptive management are needed to ensure that the replacement herbivores promote the recovery of native plants. Estudiando el Potencial para Restaurar Ecosistemas Históricos de Forrajeo con Reemplazos Ecológicos de Tortugas Terrestres  相似文献   

17.
Rogers DA  Rooney TP  Olson D  Waller DM 《Ecology》2008,89(9):2482-2492
We resurveyed the under- and overstory species composition of 94 upland forest stands in southern Wisconsin in 2002-2004 to assess shifts in canopy and understory richness, composition, and heterogeneity relative to the original surveys in 1949-1950. The canopy has shifted from mostly oaks (Quercus spp.) toward more mesic and shade-tolerant trees (primarily Acer spp.). Oak-dominated early-successional stands and those on coarse, nutrient-poor soils changed the most in canopy composition. Understories at most sites (80%) lost native species, with mean species density declining 25% at the 1-m2 scale and 23.1% at the 20-m2 scale. Woody species have increased 15% relative to herbaceous species in the understory despite declining in absolute abundance. Initial canopy composition, particularly the abundance of red oaks (Quercus rubra and Q. velutina), predicted understory changes better than the changes observed in the overstory. Overall rates of native species loss were greater in later-successional stands, a pattern driven by differential immigration rather than differential extirpation. However, understory species initially found in early-successional habitats declined the most, particularly remnant savanna taxa with narrow or thick leaves. These losses have yet to be offset by compensating increases in native shade-adapted species. Exotic species have proliferated in prevalence (from 13 to 76 stands) and relative abundance (from 1.2% to 8.4%), but these increases appear unrelated to the declines in native species richness and heterogeneity observed. Although canopy succession has clearly influenced shifts in understory composition and diversity, the magnitude of native species declines and failure to recruit more shade-adapted species suggest that other factors now act to limit the richness, heterogeneity, and composition of these communities.  相似文献   

18.
Protected areas are critical for the conservation of residual tropical forest biodiversity, yet many of these are being deforested by humans both within and outside of their administrative boundaries. Therefore, it is critical to document the significance of protected areas for conserving tropical biodiversity, particularly in mega-diverse Southeast Asia. We evaluated the importance of protected areas (national parks [NP], nature reserves [NR], and wildlife reserves [WR]) in preserving avifaunal diversity, particularly the endemic and forest species, on the island of Sulawesi. This island has one of the highest numbers of endemic avifauna genera (12) globally and is also experiencing heavy deforestation. Rarefaction analyses and species estimators showed that parks and reserves consistently recorded higher number of forest, endemic, and endemic forest bird species, in addition to larger population densities, than in their surrounding human-modified areas across eight protected areas (Gunung Manembo-nembo WR, Tangkoko-Batu Angus and Dua Saudara NR, Gunung Ambang NR, Bogani Nani Wartabone NP, Gunung Tinombala NR, Gunung Sojol NR, Lore Lindu NP, and Rawa Aopa Watumohai NP). This implies that protecting natural forests must remain as one of the fundamental conservation strategies in Sulawesi. Two small reserves (Gunung Manembo-nembo WR and Tangkoko-Batu Angus and Dua Saudara NR), however, had high number of forest and endemic bird species both within and outside their boundaries, suggesting the importance of buffer areas for augmenting small reserves so as to improve their conservation value. Ordination analyses revealed the differential response of bird species to different environmental factors (e.g., native tree cover), highlighting the significance of forested habitats with dense native vegetation cover for effective conservation of forest dependent and endemic avifauna. In addition, the distinctiveness in bird species composition among protected areas highlights the importance of establishing a reserve network across major altitudinal zones so as to achieve maximum complementarity for the conservation of Sulawesi's unique avifauna.  相似文献   

19.
Abstract: The influence of non‐native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non‐native species may both harm and provide refugia for endangered native species. The invasive non‐native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats[Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non‐native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non‐native species can be used to mitigate the impacts of other non‐native species on native species.  相似文献   

20.
A recensus was undertaken of the Middlesex Fells (West), a 400-ha woodland park in Metropolitan Boston, to determine how species composition changed between 1894 (the time of first census) and 1993. This park is isolated by an 0.5-km-wide barrier of roads and development from the eastern half of the Fells preserve, is at least 5 km from other protected areas, and is strongly affected by human activity. Out of 422 original plant species, 155 species were no longer present in 1993. Sixty-four new species were recorded on the site in 1993, the majority of them exotic species. The proportion of native species in the flora went from 83% in 1894 to 74% in 1993. Overall, the number of native species is declining at a rate of O.36% per year, whereas the exotic species are increasing at a rate of 0.18% per year. Many of the native species lost were attractive and well-known components of the native flora, such as orchids and lobeliads. Many remaining native plant species have been reduced to one or a few small populations. Species of moist woods were disproportionately lost from the Fells. The loss of species has coincided with an increase in human activity, including ground fires, a greater number of trails and roads, thinning of the forest, and trampling of the vegetation, all of which may have contributed to species loss. A policy to stop and reverse this progressive loss of species might include preventing new trails from being developed, closing off some existing trails, excluding people from sensitive areas, and reintroducing some of the lost species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号