首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Many coastal areas have served as repositories of different anthropogenic and naturally induced organic material and nutrients. The major sources thereof are riverine inputs which strongly influence the spatial and temporal distribution of benthic communities. In this study, the benthic foraminiferal, meiofaunal, and macrofaunal colonies in front of three rivers in a poorly known, but environmentally valuable, area of the Central Adriatic Sea have been examined concurrently. The physico-chemical parameters of bottom water and sediment characteristics were determined in order to characterize both the sediment-water interface and the benthic environments. Although changes in the biota are neither univocal nor unidirectional, a moderate influence of riverine input on the different communities' components can be inferred. The most affected taxa are foraminifera and copepods and, to a lesser extent, meiofaunal polychaetes and platyhelminthes. These results are also tested by the ABC curves, which reveal that the macrofaunal communities closest to the river mouths are moderately disturbed. This integrated investigation documents, for the first time, how benthic communities can be used as an early warning indicator with which to monitor the health quality of a coastal ecosystem.  相似文献   

2.
In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources.  相似文献   

3.
The distribution of contaminant radionuclides from the Sellafield nuclear fuel reprocessing plant was used to establish chronologies for three saltmarsh sediment cores from south west Scotland. delta(13)C and (14)C analyses indicated that the cores provided a useful archive record of variations in input of organic matter and carbonate. The results imply that prior to major releases of contaminant (14)C from Sellafield, the (14)C specific activity of organic matter in Irish Sea offshore sediments was about 24 Bq kg(-1) C, while that of the carbonate component was below the limit of detection. These results provide baseline data for modelling the uptake of contaminant (14)C by the Irish Sea sediment system. The study confirmed that small(13)C analyses provide a sensitive means of apportioning the origin of saltmarsh organic matter between C(3) terrigenous plants, C(4) terrigenous plants and suspended particulate marine organic matter. For the <2 mm fraction of sediment, a clear pattern of decreasing marine organic input was observed in response to increasing elevation of the marsh surface as a result of sediment accumulation. Bulk sediment, including detrital vegetation, had a dominant input from terrigenous plants. The combined use of delta(13)C and (14)C data revealed that organic matter in the marine organic component of the <2 mm fraction of contemporary surface sediments of the saltmarshes is dominated by recycled old organic material.  相似文献   

4.
于2004—2010年5月对西苕溪流域20个参照点,5个中度干扰点以及2个重度干扰点的底栖动物进行了调查,共鉴定出74科190属226个种;受干扰后,底栖动物群落物种丰富度、EPT物种丰富度、Shannon-wiener多样性指数和B-IBI指数显著下降,BI指数显著升高。CCA分析结果表明,参照、中度和重点干扰样点的底栖动物群落差异明显。城镇化引起的溪流水温上升、营养盐升高、泥沙输入量增多和堤岸固化是导致溪流底栖动物群落退化的主要原因。  相似文献   

5.
The distribution of polycyclic aromatic hydrocarbons (PAHs) in epipelic and benthic sediments from Iko River estuary mangrove ecosystem has been investigated. Total PAHs ranged from 6.10 to 35.27 mg/kg dry weight. Quantitative difference between the total PAHs in epipelic and benthic sediments showed that the benthic sediment known for higher capability to serve as sink for chemical pollutants accumulated less PAHs. This implies that PAHs in the epipelic sediment may plausibly be from industrial sources via runoff and/or of biogenic origin. A strong pyrolytic source fingerprint has been detected with slight influence of petrogenic sources. Total organic carbon normalized PAHs (sum of 16 PAHs, 59.7 to 372.4 mg/kg OC) were under (except for ES3 and BS3) the threshold effects concentrations (TEC, 290 mg/kg OC). Total PAHs in Iko River estuary sediments were in the range between ERL and ERM.  相似文献   

6.
In the present study, the BCR (Community Bureau of Reference) sequential procedure has been applied to determine the zinc partition in sediments taken from a river situated in the Southwest of Romania, in a region subject of intense mining activities. The sampling was performed during three sampling expeditions, organized in the spring, summer, and autumn, 2007. The zinc concentration in different fractions was normalized, its concentration being related to the concentrations of some metals (such as Al or Fe) that are naturally present in sediments. The zinc-contaminated sediments from the investigated area have been evaluated by means of combining the analysis data from the BCR sequential extraction with the normalization to the Al content. The most important zinc collector in the samples taken during the three sampling expeditions is the easily soluble fraction, next being amorphous iron and manganese hydrated oxides fraction, followed by organic matter fraction.  相似文献   

7.
The influence of salinity and organic matter on the distribution coefficient (K(d)) for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a brackish water-clay system was studied. The distribution coefficients (K(d)) for PFAs onto inorganic clay surfaces increased with salinity, providing evidence for electrostatic interaction for the sorption of PFAs, whereas the relationship between K(d) and organic carbon content (f(oc)) suggested that hydrophobic interaction is the primary driving force for the sorption of PFAs onto organic matter. The organic carbon normalized adsorption coefficient (K(oc)) of PFAs can be slightly overestimated due to the electrostatic interaction within uncoated inorganic surfaces. In addition, the dissolved organic matter released from coated clay particles seemed to solvate PFA molecules in solution, which contributed to a decrease in K(d). A positive relationship between K(d) and salinity was apparent, but an empirical relationship for the 'salting-out' effect was not evident. The K(d) values of PFAs are relatively small compared with those reported for persistent organic pollutants. Thus, sorption may not be a significant route of mass transfer of PFAs from water columns in estuarine environments. However, enhancement of sorption of PFAs to particulate matter at high salinity values could evoke potential risks to benthic organisms in estuarine areas.  相似文献   

8.
This study aimed to evaluate the sediment quality in the estuarine protected area known as Cananéia-Iguape-Peruíbe (CIP-PA), located on the southeastern coast of Brazil. The study was designed considering possible negative effects induced by the city of Cananéia on the sediment quality of surrounding areas. This evaluation was performed using chemical and ecotoxicological analyses. Sediments were predominantly sandy, with low CaCO3 contents. Amounts of organic matter varied, but higher contents occurred closer to the city, as well as did Fe and Total Recoverable Oils and Greases (TROGs) concentrations. Contamination by Cd and Cu was revealed in some samples, while concentrations of Zn were considered low. Chronic toxicity was detected in all tested sediments and acute toxicity occurred only in sediments collected near the city. The principal component analysis (PCA) revealed an association among Cd, Cu, Fe, TROG, fines, organic matter, CaCO3, and chronic toxicity, whereas acute toxicity was found to be associated with Zn and mud. However, because Zn levels were low, acute toxicity was likely due to a contaminant that was not measured. Results show that there is a broad area within the CIP-PA that is under the influence of mining activities (chronic toxicity, moderate contamination by metals), whereas poorer conditions occur closer to Cananéia (acute toxicity); thus, the urban area seems to constitute a relevant source of contaminants for the estuarine complex. These results show that contamination is already capable of producing risks for the local aquatic biota, which suggests that the CIP-PA effectiveness in protecting estuarine biota may be threatened.  相似文献   

9.
The characteristics of organic phosphorus (P(o)) fractions in the sediments of nine lakes from the middle and lower reaches of the Yangtze River region, Yungui Plateau, Qinghai-Tibet Plateau, Northeast China Region, and Mongolia-Xinjiang Plateau, China were investigated and the differences of the different lakes on P fractionation was discussed. The results indicated that organic matter (OM) showed significant positive correlations with P(o) in sediment samples, and the rank order of the P(o) fractions was: residual P(o) > HCl-P(o) > fulvic acid-P(o) > humic acid-P(o) > NaHCO(3)-P(o) with mean relative proportions 7.4 : 3.4 : 2.4 : 1.7 : 1.0. The labile and moderately labile P(o) were the main fractions in the sediments for shallow eutrophic lakes except for Lake Qilu, however, nonlabile P(o) was dominant in the sediments from deep lakes. Labile P(o) was significantly correlated with total phosphorus (TP), inorganic phosphorus (P(i)), P(o), NaHCO(3)-P(i), HCl-P(i) and NaOH-P(i), and the nonlabile P(o) was significantly and positively related to OM, TP, P(o) and NaOH-P(i).  相似文献   

10.
Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.  相似文献   

11.
Trace metals biogeochemistry of Kumaun Himalayan Lakes,Uttarakhand, India   总被引:1,自引:0,他引:1  
The increasing urbanization, along with tourism, has posed a major threat to the Kumaun Himalayan Lakes, Uttarakhand, India. The total metal concentration in the water, interstitial water, and sediments along with the metal fractionation studies were carried out to understand the remobilization of the trace metals from the sediments of the lakes. The high concentration of the metals in the water column of the lakes generally decreases with depth and the metals release from the sediment is mainly due to the prevalence of anoxic condition at the sediment–water interface and sediment column. The sediment shows that metals Fe and Cr are derived from detrital source, whereas Co, Ni, and Zn are derived mainly from the organic matter dissolution. The sparse correlation of the trace metals with Ti shows most of the metals have chiefly re-precipitated from the water column. The metals speciation studies also supports that metals experience a high rate of anoxic dissolution and their precipitation onto the sediments are determined by the sediment composition and organic matter content. The high concentration of manganese in the interstitial water in the lakes indicates dissolution of organic matter. The released manganese is adsorbed/precipitated as carbonate phase (Nainital Lake) and oxide pahse (in other lakes). The study shows that the trace metals are regenerated from the sediments due to oxyhydroxide dissolution and organic matter decomposition.  相似文献   

12.
Qinghai Lake, situated on the Qinghai–Tibet plateau, is the largest lake in China. In this study, the water and sediment quality were investigated in Qinghai Lake, three sublakes, and five major tributaries. Both Na+ and Cl? were found to be the major ions present in Qinghai Lake and the three sublakes, while Ca2+ and HCO3? dominated the tributaries. Compared with historical data from the 1960s, the concentrations of NH4 +, NO3 ?, and soluble reactive silica have increased considerably, likely caused by increased human activities in the area. Compared to the historical data, chemical oxygen demand has increased and lake water transparency has decreased, likely related to an increase in nutrient levels. Relatively high concentrations of total nitrogen (TN) and total phosphorus (TP) were observed in Qinghai Lake sediments, although P fraction types and low water concentrations of these two indicate low possibility of transfer into the water column. The ratios of C/N suggest that the organic matter in the sediments are primarily from autochthonous sources. TN and total organic carbon in the sediment cores increased slowly up the core while TP and total inorganic carbon have been fairly constant.  相似文献   

13.
Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.  相似文献   

14.
Sediment phosphorus (P) fractions and sorption characteristics and P release from intact sediment cores of Baiyangdian Lake in North China in spring 2009 were investigated. Results of chemical fractionation showed that total P (TP) content in sediment ranged from 443 to 611 mg kg(?-1). Of the P fractions including inorganic P (IP) and organic P (OP), IP was a dominant component of TP and present in the form of P bounded to calcium (Ca-P) while the bioavailable P content bounded to Al, Fe, and Mn oxides and hydroxides (Fe/Al-P) varied from 14 to 102 mg kg(?-1). The batch experiments showed that the sediments had appreciable maximum P adsorption capacity from 141.86 to 377.37 mg kg(?-1). However, the zero P equilibrium concentration (C?(eq))in most sampling sites was larger than the P concentration in water column. Accordingly, the sediments from those sampling sites would release P into the overlying water at the positive P flux rates as a P release source. Significant positive correlation between P flux rates and Fe/Al-P revealed that the sediment P release would mainly originate from the bioavailable P fraction. It is evident that the inherent phosphorus present in lake sediments would be a major threat to the water quality and ecosystem reservation in Baiyangdian lake.  相似文献   

15.
Examples are presented of different techniques which are in use, or could be used, to monitor the fate and effects of oil pollution in Dutch marine waters by oil spills and chronic contamination by rivers, processing water from the oil industry, etc.A number of techniques are presented to quantify the fate of oil in water, sediments and biota, and some readily available methods to monitor possible effects in the ecosystem.In Dutch coastal waters much effort is being given to airborne detection of oil at the sea surface in order to reduce pollution and to take rapid measures in cases of severe pollution. Oil concentrations in sediments and selected organisms can be monitored as a general quality control measure, and to check the functioning of licensed installations. If concentrations above background levels are found, research on possible effects should be initiated. In this context short term studies on stress-indicators are very useful. Laboratory based investigations, for example in model ecosystems, can be carried out to test hypotheses from such studies. Elevated oil concentrations and indications for ecological effects may result in changes in the management of the marine area in question. Monitoring of population dynamics and species composition, notably of benthic macrofauna, should be carried out to verify long-term effects on the ecosystem.  相似文献   

16.
The content of carbon (C), nitrogen(N), fossil carotenoids (TC) and chlorophyllderivatives (CD) in the sediments of five Estonianlakes was analysed. Historical records of man-inducedchanges on catchments were used for the interpretationof the obtained data. On the basis of the C/N ratiosit was estimated that the planktonic matter formed ca.25% (C/N ratio 24) to 90% (C/N ratio 8) of theorganic pool matter of lake sediments. In eutrophicLake Ruusmäe the fraction of the phytoplanktonproduced in lakes was highest, amounting toapproximately 80–95% of the deposited organic matter.Remarkable C/N changes were noted in the sedimentsfrom lakes Matsimäe and Viitna, where the contentof planktonic matter has increased during lastdecades, reflecting an increase in recreationalactivity around these lakes. The variations in pigmentconcentrations in the sediments of lakes Matsimäeand Ruusmäe could be explained by changes in theland-use that have altered the intensity of primaryproduction and conditions of TC and CD degradationbefore the final burial.  相似文献   

17.
Sequential chemical extraction using chelating agents were used to study the P dynamics and its bioavailability along the surface sediments of the Cochin estuary (southwest coast of India). Sediments were analyzed for major P species (iron bound P, calcium bound P, acid soluble organic P, alkali soluble organic P and residual organic P), Fe, Ca, total carbon, organic carbon, total nitrogen and total sulfur contents. An abrupt increase in the concentration of dissolved inorganic P with increasing salinity was observed in the study region. Iron-bound P exhibited a distinct seasonal pattern with maximum values in the monsoon season when fresh water condition was prevailed in the estuary. As salinity increased, the percentage of iron-bound P decreased, while that of calcium-bound P and total sedimentary sulfur increased. C/P and N/P ratios were low which indicate that large amounts of organic matter enriched with P tend to accumulate in surface sediments. The high organic P contribution in the sedimentary P pool may indicate high organic matter load with incomplete mineralization, as well as comparatively greater percentage of humic substance and resistant organic compounds. Principal component analysis is employed to find the possible processes influencing the speciation of P in the study region and indicate the following processes: (1) the spatial and seasonal variations of calcium bound P and acid soluble organic P was mainly controlled by sediment texture and organic carbon content, (2) sediment redox conditions control the distribution of iron bound P and (3) the terrigenous input of organic P is a significant processes controlling total P content in surface sediments. The bioavailable P was very high in the surface sediments which on an average accounts for 59 % in the pre-monsoon, 65 % in the monsoon and 53 % in the post-monsoon seasons. The surface sediments act as a potential internal source of P in the Cochin estuary.  相似文献   

18.
The distribution of mercury (Hg) in chemical fractions (H2O, 0.05 M Na2-EDTA pH 3, 1 M HCl, humic and fulvic acids, and non-hydrolysing residue) of recent pelagic sediment cores of the Sea of Japan (East Sea) was studied. Total Hg content in the sediments was rather low: 83 +/- 30 (21-173) etag g(-1), indicating the absence of substantial specific sources of the element in the deep part of the sea. Hg content within the sediment core varied by a factor of 1.3-1.8, showing peaks that coincide with the near-surface and buried sediment slices of light brown and brown "oxidized" colours and evidencing Hg redox-sensitive diagenetic redistribution. Hg exerted its maximum mobility in the near-surface sediment strata as a component of water-soluble organic matter. Despite the predominance of fulvic acids in extracted humus fractions, humic acids were a much more efficient concentrator for Hg (0-79 vs. 188-233 microg Hg g(-1) C(org), respectively). Nevertheless, the most refractory non-hydrolyzing residue (humin) fraction contained the principal Hg pool in the sediments. Hg content in all the extracted fractions decreased with core depth, thus indicating Hg immobilization as a principal tendency in Hg fate during post-depositional diagenesis.  相似文献   

19.
The chemistry of heavy metals in sediments with respect to bio-availability and chemical reactivity is regulated by pH, texture, and organic matter contents of the sediments and specific binding form and coupled reactivity of the metals within. To focus on the metal distribution (Fe, Mn, Pb, Cd, Zn, Co, Cu, and Cr) and behavior in a fresh water aquifer system along with the ecological toxicity parameters, a four-step sequential extraction method was applied on 18 Eastern Ghats’ type sediments from fluorosis-hit Nayagarh district, India. Geo-accumulation index of metals in the sediments indicates that they are practically uncontaminated and/or less contaminated with and Fe, Mn, and Cu; contaminated to moderately contaminated with Pb, Zn, and Cr; and strongly contaminated with Cd. Rather, more than 80 % recovered Cd metal concentration in sediments constitute the labile fractions. Temporal clustering of metal fractions indicates transition metal fraction distribution claiming the sediment pH regulation. Similarly, base metal distribution accounts for organic carbon and soil conductivity due to their greater availability in exchangeable and sulfide fractions. Correlation analysis and factor analysis scores demonstrate lack of inter-relationship between transition group and base metal fractions. High fluoride concentration in ground water is associated with high sodium-bicarbonate-iron affinity with elevated pH values (i.e., >7.0) and high positive factor score with the total iron concentration in ground water.  相似文献   

20.
In 2001, 28 acres of the bottom of Ward Cove, AK (USA) were remediated using thin layer placement, to enhance the natural recovery of contaminated sediments. The remediated areas were part of an 80-acre area of concern identified offshore from the site of a former sulfite pulp mill. The primary chemicals of concern were those commonly associated with organic enrichment near pulp mills: ammonia and 4-methylphenol. The primary remedial objectives were to reduce the toxicity of the contaminated sediments and to stimulate colonization of the remediated areas by benthic macroinvertebrates. In 2004, the initial monitoring event for the remediated areas was conducted, and included evaluations of physical/chemical sediment variables (i.e., total organic carbon, grain size distribution, ammonia, and 4-methylphenol), sediment toxicity (i.e., using the 10-day amphipod survival test with Eohaustorius estuarius), and in situ benthic macroinvertebrate communities. Results of the monitoring event showed that conditions in the remediated areas had improved considerably in the 3 years since thin layer placement had occurred. At most stations, concentrations of both ammonia and 4-methylphenol were very low, and amphipod survival was >or=90%. In addition, benthic macroinvertebrates appeared to be rapidly colonizing the remediated areas, based on evaluations of several community metrics (i.e., taxa richness, diversity, and dominance), as well as key indicator species of organic enrichment and associated transitional areas (i.e., primarily the polychaetes Capitella capitata and Nephtys cornuta, and the bivalve molluscs Axinopsida serricata and Parvilucina tenuisculpta). In general, colonization was consistent with the patterns identified for areas recovering from organic enrichment on the continental shelf of southern California and elsewhere. Based on these results, thin layer placement was considered successful in enhancing the natural recovery of the remediated sediments in Ward Cove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号