首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance.  相似文献   

2.
This study was conducted to assess the retail food as a possible vehicle for antimicrobial resistant, particularly quinolones resistant and pathogenic Escherichia coli. We determined the prevalence and characteristics of nalidixic acid (Nal) resistant E. coli isolates from diverse retail food samples. In all, 70 (28%) of 250 E. coli isolates studied were Nal-resistant E. coli and 91% of these were multi-drug resistant. Plasmid mediated quinolone resistance genes were identified in 32 isolates, including aac(6′)-Ib-cr (n = 16), qnrS1 (n = 11) and qnrB19 (n = 7). Mutations in gyr A and par C genes were detected among 80% of the isolates, and the isolates showed substitution Ser83-Leu and Asp87-Asn in gyrA and Ser80-Ile in parC. In addition, three different gene cassettes were identified (aadA1, aadA7, aac(3)-Id) in 18%. Virulence-associated genes stx1, eae, sfa, hlyA and stx2 were found in six (8%), three (4%), two (3%), three (4%) and three (4%) isolates, respectively. E. coli isolates of phylogenetic group A were dominant (64%, 45/70). Pulsed field gel electrophoresis revealed none epidemiological relationship between these isolates. The results of this work report the higher frequency of Nal-resistant E. coli isolates from Moroccan retail food samples including MDR and pathogenic isolates.  相似文献   

3.
将大肠杆菌E.coli ATCC8739置于12.0 T超强静磁场(ultra-strong static magnetic field,SMF)中进行处理,获得了磁场处理0.5、1、2、4和8 h的菌株E.coli-SMFn(n=0.5、1、2、4、8)。在37℃、pH 7、静置的条件下,菌株对偶氮染料AR14(I.C.Acid Red 14)的脱色结果指出,当反应进行到4、6和8 h时,E.coli-SMF8的脱色效率分别为18%、55%和96%,远高于E.coli ATCC8739的3%、19%和50%,表明SMF作用显著地增强了菌株的脱色效率。基因组DNA提取、PCR扩增、分子克隆以及基因测序的实验结果进一步表明,全部6例E.coli ATCC8739菌株的偶氮还原酶基因(acpD)序列均与GenBank中报道的完全一致;而E.coli-SMF8菌株的acpD-SMF8核酸序列中缺失了第99位的胞嘧啶。该缺失突变不仅使acpD-SMF8的核酸序列与acpD的存在显著不同,同时得到了具新活性中心的偶氮还原酶AzoR-SMF8。这个新的活性中心具有更强的黄素(FMN)结合能力,因此使该酶与偶氮染料的亲和力大大增加,促进了脱色效率的提高。  相似文献   

4.
Contaminated irrigation water may greatly affect not only the quality of produce but also the people exposed to it. In this study, agricultural irrigation waters in Bulacan, Philippines were assessed and found to be contaminated with Escherichia coli (E. coli) ranging from 0.58 to 4.51 log10 CFU/mL. A total of 79 isolates of E. coli were confirmed through polymerase chain reaction (PCR) amplifying the uidA gene and were tested for phenotypic resistance using 10 antimicrobials through the Kirby–Bauer disc diffusion method. Forty-six isolates (58.22%) were noted to be multidrug resistant (MDR) with high resistance rate to cephalothin, tetracycline, streptomycin, ampicillin, trimethoprim, nalidixic acid, and chloramphenicol. Moreover, this study also examined the prevalence of Class I and II integrons accounting to 67.39% and 17.39%, respectively, of the MDR E. coli strains using multiplex PCR. The results imply that the agricultural water used in Bulacan is contaminated with the fecal material of man or other animals present in the area, and the presence of MDR bacteria, which pose a potential threat to individuals in these areas, is alarming. In addition, detection of integrons could be a good marker for the identification of MDR isolates. Lastly, this study could develop strategies for the proper management of farming sites leading to the detection of food-borne pathogens and prevention of infectious diseases.  相似文献   

5.
An assessment of the steroid estrogen removing performance of 23 different sewage treatment plants (STPs) was performed. The assessment relied on a model to estimate influent concentrations, and completed questionnaires on the STP treatment details from the relevant water companies. This information was compared with observed effluent 17beta-estradiol (E2) and estrone (E1) concentrations. The 10 biological filter plants (BFP) in the study performed poorly with only 30% (SD 31) removal on average for E1. This reduced E1 removal performance of the BFPs compared to all the other STP types in the survey was statistically significant (p<0.001). Scenarios of all the STPs as activated sludge types, and one as all BFP types were modelled using the GREAT-ER model set up for the Aire/Calder catchment in the UK. This difference was shown to have an important effect on predicted river E1 concentrations and consequent risk classifications.  相似文献   

6.
7.
Alasan, the bioemulsifier of Acinetobacter radioresistens KA53, is a high molecular-mass complex of an alanine-containing polysaccharide and three proteins. This gene was isolated from the A. radioresistens using PCR and the amplified product (850 bp) was cloned using PGEMT cloning kit. DNA sequence was carried out for the amplification and sequence analysis showed that the PCR product was highly similar to the OMPA precursor protein which called Alan. Subcloning was carried out into pTRAC expression vector and the purified protein was used in mineralisation of the polyaromatic hydrocarbon. As well as the recombinant E. coli cells were cultured directly on MSM containing four polyaromatic hydrocarbon using real time method (phenol, naphthalene, phenantherene and antherathene). The obtained results showed that no difference between the purified protein and the using of the recombinant cells directly with the presence of the inducer like IPTG. Both of the purified protein and the recombinant cells showed high degradation rates for (anthrathene and phenantherene).  相似文献   

8.
A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes.  相似文献   

9.
Tetracyclines are antibiotics commonly used in swine farms to treat disease and promote growth. However, there are growing concerns regarding the discharge of animal feces into the environment owing to the potential for development and dissemination of tetracycline resistance genes (TRGs). In this study, farming wastewater from one Chinese swine farm as well as river water from seven locations downstream of the farm was sampled. Polymerase chain reaction (PCR) showed that 12 TRGs, including six efflux pump genes (tet(B), tet(C), tet(D), tet(E), tet(G) and tet(L)), five ribosomal protection proteins (RPPs) genes (tet(O), tet(M), tet(Q), tet(W) and tet(S)), and one enzymatic modification gene (tet(X)), were present in all wastewater and river water samples. Quantitative real-time PCR (qPCR) showed that the abundance of tet(C), tet(X), tet(O), tet(M), tet(Q) and tet(W) decreased with downstream flow. Among the detected TRGs, tet(C) had the highest abundance, ranging from 459.5 copies/16S rRNA gene copies in wastewater to 33.8 copies/16S rRNA gene copies in river water samples collected from the last location. Furthermore, pig-specific Bacteroidales 16S rRNA genetic marker was quantified by qPCR to determine the level of fecal pollution in the river water. Bivariate correlation analysis confirmed that the total relative abundance of the six TRGs was significantly correlated with the level of swine feces in the aquatic environment (R2 = 0.63, P < 0.05), suggesting that swine feces mainly contributed to the spread of TRGs in the river water.

Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A to view the free supplemental file.  相似文献   

10.

Purpose

The presence of four phenolic endocrine disrupting compounds (EDCs: nonylphenol [NP], NP monoethoxylate[NP1EO], bisphenol A [BPA], triclosan, [TCS]) and four nonsteroidal anti-inflammatory drugs (NSAIDs: ibuprofen[IBF], ketoprofen [KFN], naproxen [NPX], diclofenac [DCF]) in a Greek river receiving treated municipal wastewater was investigated in this study.

Methods

Samples were taken from four different points of the river and from the outlet of a sewage treatment plant (STP) during six sampling campaigns, and they were analyzed using gas chromatography?Cmass spectrometry.

Results

According to the results, EDCs were detected in almost all samples, whereas NSAIDs were detected mainly in wastewater and in the part of the river that receives wastewater from the STP. Among the target compounds, the highest mean concentrations in the river were detected for NP (1,345?ng?L?1) and DCF (432?ng?L?1). Calculation of daily loads of the target compounds showed that STP seems to be the major source of NSAIDs to the river, whereas other sources contribute significantly to the occurrence of EDCs. The environmental risk due to the presence of target compounds in river water was estimated, calculating risk quotients for different aquatic organisms (algae, daphnids, and fish). Results denoted the possible threat for the aquatic environment due to the presence of NP and TCS in the river.  相似文献   

11.
Zushi Y  Takeda T  Masunaga S 《Chemosphere》2008,71(8):1566-1573
Products containing perfluorinated compounds (PFCs) have been widely used during the last 50 years. As a result, worldwide environmental pollution by PFCs has been reported. The sources of PFC pollution in the aquatic environment have been poorly understood. In this study, river water and sewage treatment plant (STP) effluent were sampled along the stretch of the Tsurumi River and also at a fixed station in the river. The concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were measured. With an increase in river flow rate, it was observed that the PFC concentrations in the river water at fixed station were remained the same or increased for PFOS (179.9+/-34.4-179.6+/-69.5 ng l(-1)), PFHxA (5.5+/-0.8-9.0+/-2.6 ng l(-1)), PFHpA (3.1+/-0.3-4.4+/-1.0 ng l(-1)), and PFOA (15.9+/-0.3-13.4+/-2.5 ng l(-1)) whereas the concentration of PFNA (38.0+/-3.3-15.4+/-3.0 ng l(-1)) and PFDA (3.9+/-0.3-2.1+/-0.3 ng l(-1)) were decreased. On the other hand, the loads of every PFC increased with an increase in river flow rate. The loads of PFCs in rain runoff were estimated to be 2-11 times greater than those in STP effluents that are discharged into the river. These results indicate the existence of a PFC nonpoint source (NPS) and its impact to the total PFC load of river is significant.  相似文献   

12.
Distribution coefficients (K(d)) between water and activated sludge particles (f(oc)=27.7+/-0.1%) were measured for the steroid estrogens (SE), estrone (E1), 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) in batch experiments. Experimental concentration levels ranged from environmentally realistic low ng/l to the high microg/l. In this range K(d)s were independent of their water concentration. The experimentally obtained K(d)s (with 95% confidence intervals) were 402+/-126 l/kg, 476+/-192 l/kg and 584+/-136 l/kg for E1, E2 and EE2, respectively. K(d)s were used to estimate the fraction of the total SE concentration that is expected to be sorbed in the activated sludge treatment tanks of a typical STP assuming equilibrium conditions. Assuming a suspended solids concentration of 4 g/l dissolved solids (ds), it was estimated that 61+/-9%, 66+/-13% and 70+/-6% of the total concentration of E1, E2 and EE2, respectively, would be sorbed during activated sludge treatment. The fraction of the SEs that was expected to be sorbed to suspended sludge particles in the effluents from a typical Danish STP was estimated to be only 0.20+/-0.06%, 0.24+/-0.10% and 0.29+/-0.07% of the total concentration of E1, E2 and EE2, respectively, at a suspended solids concentration of 5 mg/lds. For a typical STP the removal of steroid estrogens with excess sludge was estimated to be only 1.5-1.8% of the total loading if equilibrium conditions exists. Sorption is therefore not important for the fate of SEs in STPs compared to biodegradation.  相似文献   

13.
Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5alpha), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations.  相似文献   

14.
Abstract

Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.  相似文献   

15.
Disinfection of wastewater solids (waste activated solids [WAS]) by interstitial vapor generation was investigated. In addition to the magnitude of disinfection, the amount of water removed and cost relative to traditional residuals disinfection processes was also examined. The process of interstitial vapor generation occurs as a result of the rapid heating of liquid in the interstices of the solid-liquid array. Intense heating causes boiling of the slurry liquid, resulting in an expanding vapor front that simultaneously dewaters the wastewater solids and contributes to the destruction of viable pathogenic microorganisms. Objectives of the study were threefold: (1) to validate disinfection of WAS using the interstitial vapor technique; (2) establish the degree of possible drying of the residuals using the techniques; and (3) establish the key operating variables for the process. Results showed a significant reduction in the most probable number of total coliforms and Escherichia coli (E. coli). Specifically, greater than four-log unit reductions were produced for both total coliform and E. coli bacteria. In addition to quantifying the reduction in bacteria, the percent solids were increased from an initial amount of 7.6% (mass basis) to a final solids content greater than 90% using optimal processing conditions. Cost comparisons were also conducted and shown to be quite favorable when compared with traditional disinfection methods such as lime addition. Because of the high level of E. coli reduction achieved, the process of interstitial vapor generation is shown to be capable of converting a class B biosolids into a class A pathogen reduced product. For example, an initial most probable number (MPN) of 1.2 x 10(6) E. coli bacteria were reduced to 19 at the extreme conditions of the process, well below the requirement of an MPN of 1000 for fecal coliform bacteria. Given its ability to disinfect and dewater wastewater solids, the interstitial vapor generation process was found to be a robust and beneficial technique to produce an environmental and publicly acceptable recyclable biosolids resource.  相似文献   

16.
Sun J  Hu J  Peng H  Shi J  Dong Z 《Chemosphere》2012,87(1):37-42
Increasing antibacterial resistance and pathogenicity in the environment is of growing concern due to its potential human risk. In the present study, 236 Escherichia coli isolates were collected from Wenyu River in China on drugless (48 isolates) and quinolone-containing plates (189 isolates). Their minimum inhibitory concentrations (MICs) were determined ranging from 0.125 μg mL−1 to 128 μg mL−1. Mutation points related to fluoroquinolone resistance were observed at S83 to L and D87 to N or Y in the GyrA subunit and S80 to R or I and E84 to G in the ParC subunit. Generally, MICs of LEV and GAT are dependent on the patterns of these mutation points. The profile with three mutation points was related to LEV-resistant E. coli isolates, and the (S83L, D87N + S80I) mutation profile was most prevalent (65.7%) in LEV-resistant isolates, while a large proportion of isolates, even those with three mutation points, were susceptive to GAT. The incidence of virulence factors in LEV-resistant isolates (44.7%, 59/132) was much higher than in nonresistant isolates (23.1%, 24/104) (χ2 = 11.925, 1° of freedom, p < 0.001) indicating that fluoroquinolone-resistant E. coli would pose a potential risk. A similar distribution was also found in isolates resistant to GAT (χ2 = 7.843, 1° of freedom, = 0.0079).  相似文献   

17.
Biosolids produced from pulp and paper mill wastewater treatment have excellent properties as soil conditioners, but often contain high levels of Escherichia coli. E. coli are commonly used as indicators of fecal contamination and health hazard; therefore, their presence in biosolids causes concern and has lead to restrictions in land-spreading. The objectives of this study were to determine the following: (1) if E. coli from the biosolids of a wastewater-free pulp and paper mill were enteric pathogens, and (2) if other waterborne microbial pathogens were present. E. coli were screened for heat-labile and heat-stable enterotoxin and verocytotoxin virulence genes using a polymerase chain reaction. Ten isolates were also screened for invasion-associated locus and invasion plasmid antigen H genes. None of the 120 isolates carried these genes. Tests for seven other microbial pathogens were negative. Effluents and biosolids from this mill do not contain common microbial pathogens and are unlikely to pose a health hazard.  相似文献   

18.
In February 2011, at the peak of an influenza outbreak, we performed a comprehensive analysis of the mass balances of four anti-influenza drugs—oseltamivir (OS), oseltamivir carboxylate (OC), amantadine (AMN), and zanamivir (ZAN)—in the urban area of the Yodo River system. This area includes three main river catchments (the Katsura, Uji, and Kidzu Rivers) and is home to 12 million people, about 10% of Japan’s population. Water was sampled at six main rivers and 13 tributary sites and eight sewage treatment plants (STPs). We concluded that the STP effluents were the major sources of the anti-influenza drug load in the Yodo River system (68–94% of total mass fluxes). Extended measurement throughout the Yodo River system further showed only small fluctuations of the ratio of OS to OC from 0.2 to 0.3, suggesting that OS and its metabolite are environmentally stable. The results also clearly showed the importance of reducing the levels of anti-influenza drugs in the water environment by reducing their emission at STPs.  相似文献   

19.
Cyanide is a major environmental pollutant of the chemical and metallurgical industries. Although extremely toxic, cyanide can enzymatically be converted to the less toxic thiocyanate by rhodaneses (thiosulfate:cyanide sulfurtransferases, EC 2.8.1.1). We engineered a genetic system to express high levels of recombinant Pseudomonas aeruginosa rhodanese (r-RhdA) in Escherichia coli, and used this organism to test the role of r-RhdA in cyanide detoxification. Inducible expression of the rhdA gene under the control of the hybrid T7-lacO promoter yielded active r-RhdA over a 4-h period, though r-RhdA-expressing E. coli showed decreased viability starting from 1 h post-induction. At this time, Western blot analysis and enzymatic assay showed r-RhdA partition between the cytoplasm (95%) and the periplasm (5%). The accessibility of thiosulfate to r-RhdA was a limiting step for the sulfur transfer reaction in the cellular system, but cyanide conversion to thiocyanate could be increased upon permeabilization of the bacterial membrane. Specific r-RhdA activity was higher in the whole-cell assay than in the in vitro assay with pure enzyme (2154 vs. 816 micromol min-1 mg-1 r-RhdA, respectively), likely reflecting enzyme stability. The r-RhdA-dependent cyanide detoxification resulted in increased resistance of r-RhdA overexpressing E. coli to 5 mM cyanide. Bacterial survival was paralleled by release of thiocyanate into the medium. Our results indicate that cyanide detoxification by engineered E. coli cells is feasible under laboratory conditions, and suggest that microbial rhodaneses may contribute to cyanide transformation in natural environments.  相似文献   

20.
Occurrence and behavior of fluoroquinolone antibacterial agents (FQs) were investigated in hospital wastewaters in Hanoi, Vietnam. Hospital wastewater in Hanoi is usually not treated and this untreated wastewater is directly discharged into one of the wastewater channels of the city and eventually reaches the ambient aquatic environment. The concentrations of the FQs, ciprofloxacin (CIP) and norfloxacin (NOR) in six hospital wastewaters ranged from 1.1 to 44 and from 0.9 to 17 micrgl(-1), respectively. Total FQ loads to the city sewage system varied from 0.3 to 14 g d(-1). Additionally, the mass flows of CIP and NOR were investigated in the aqueous compartment in a small wastewater treatment facility of one hospital. The results showed that the FQ removal from the wastewater stream was between 80 and 85%, probably due to sorption on sewage sludge. Simultaneously, the numbers of Escherichia coli (E. coli) were measured and their resistance against CIP and NOR was evaluated by determining the minimum inhibitory concentration. Biological treatment lead to a 100-fold reduction in the number of E. coli but still more than a thousand E. coli colonies per 100ml of wastewater effluent reached the receiving water. The highest resistance was found in E. coli strains of raw wastewater and the lowest in isolates of treated wastewater effluent. Thus, wastewater treatment is an efficient barrier to decrease the residual FQ levels and the number of resistant bacteria entering ambient waters. Due to the lack of municipal wastewater treatment plants, the onsite treatment of hospital wastewater before discharging into municipal sewers should be considered as a viable option and consequently implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号