首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Assessment and control of nutrient losses from paddy fields is important to protect water quality of lakes and streams in Korea. A four‐year field study was carried out to investigate water management practices and losses of nitrogen (N) and phosphorus (P) in rice paddy irrigation fields in southern Korea. The amount and water quality of rainfall, irrigation, surface drainage, and infiltration were measured and analyzed to estimate inputs and losses of N and P. The observed irrigation amount surpassed consumptive use, and approximately 52 to 69 percent of inflow (precipitation plus irrigation) was lost to surface drainage. Field data showed that significant amounts of irrigation water and rainfall were not effectively used for rice paddy culture. Water quality data indicated that drainage from paddy fields could degrade the recipient water environment. The nutrient balance indicated that significant amounts of nutrients (29.5 percent of total N and 8.6 percent of total P compared to input) were lost through surface drainage. Furthermore, up to half the nutrient losses occurred during nonstorm periods. The study results indicate that inadequate water management influences N and P losses during both storm and nonstorm periods. Proper water management is required to reduce nutrient losses through surface drainage from paddy fields; this includes such measures as minimum irrigation, effective use of rainfall, adoption of proper drainage outlet structures, and minimized forced surface drainage.  相似文献   

2.
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.  相似文献   

3.
Subsurface tile drainage from row-crop agricultural production systems has been identified as a major source of nitrate entering surface waters in the Mississippi River basin. Noncontrollable factors such as precipitation and mineralization of soil organic matter have a tremendous effect on drainage losses, nitrate concentrations, and nitrate loadings in subsurface drainage water. Cropping system and nutrient management inputs are controllable factors that have a varying influence on nitrate losses. Row crops leak substantially greater amounts of nitrate compared with perennial crops; however, satisfactory economic return with many perennials is an obstacle at present. Improving N management by applying the correct rate of N at the optimum time and giving proper credits to previous legume crops and animal manure applications will also lead to reduced nitrate losses. Nitrate losses have been shown to be minimally affected by tillage systems compared with N management practices. Scientists and policymakers must understand these factors as they develop educational materials and environmental guidelines for reducing nitrate losses to surface waters.  相似文献   

4.
Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction of nutrient losses from the five BMPs was substantial.  相似文献   

5.
Eutrophication is a serious water quality problem in estuaries receiving increasing anthropogenic nutrient loads. Managers undertaking nutrient-reduction strategies aimed at controlling estuarine eutrophication are faced with the challenge that upstream freshwater segments often are phosphorus (P)-limited, whereas more saline downstream segments are nitrogen (N)-limited. Management also must consider climatic (hydrologic) variability, which affects nutrient delivery and processing. The interactive effects of selective nutrient input reductions and climatic perturbations were examined in the Neuse River Estuary (NRE), North Carolina, a shallow estuary with more than a 30-year history of accelerated nutrient loading and water quality decline. The NRE also has experienced a recent increase in Atlantic hurricanes and record flooding, which has affected hydrology and nutrient loadings. The authors examined the water quality consequences of selective nutrient (P but not N) reductions in the 1980s, followed by N reductions in the 1990s and an increase in hurricane frequency since the mid-1990s. Selective P reductions decreased upstream phytoplankton blooms, but increased downstream phytoplankton biomass. Storms modified these trends. In particular, upstream annual N and P concentrations have decreased during the elevated hurricane period. Increased flushing and scouring from storms and flooding appear to have enhanced nutrient retention capabilities of the NRE watershed. From a management perspective, one cannot rely on largely unpredictable changes in storm frequency and intensity to negate anthropogenic nutrient enrichment and eutrophication. To control eutrophication along the hydrologically variable freshwater–marine continuum, N and P reductions should be applied adaptively to reflect point-source–dominated drought and non–point-source–dominated flood conditions.  相似文献   

6.
This paper investigates index models as a tool to estimate the risk of N and P source strengths and loss at the catchment scale. The index models assist managers in improving the focus of remediation actions that reduce nutrient delivery to waterbodies. N and P source risk factors (e.g. soil nutrient concentrations) and transport risk factors (e.g. distance-to-streams) are used to determine the overall risk of nutrient loss for a case study in the Tuross River catchment of coastal southeast Australia. In the development of the N index model for Tuross, particulate N was considered important based on the observed event water quality data. In contrast to previous N index models, erosion and contributing distance were therefore included in the Tuross River catchment N index. Event-based water quality monitoring, and soil information, or in data-poor catchments conceptual understanding, are essential to represent catchment-scale processes. The techniques have high applicability in other catchments, and are complementary to other modelling techniques such as process-based semi-distributed modelling. Index models generally provide much more detailed spatial resolution than fully- or semi-distributed conceptual modelling approaches. Semi-distributed models can be used to quantify nutrient loads and provide overall direction to set the broad focus of management. Index models can then be used to refine on-the-ground investigations and investment priorities. In this way semi-distributed models can be combined with index models to provide a set of powerful tools to influence management decisions and outcomes.  相似文献   

7.
Modeling is a common practice to evaluate factors affecting water quality in environmental systems impaired by point and nonpoint losses of N and P. Nevertheless, in situations with inadequate information, such as ungauged basins, a balance between model complexity and data availability is necessary. In this paper, we applied a simplified analytical model to an artificially drained floodplain in central-western Italy to evaluate the importance of different nutrient sources and in-stream retention processes and to identify critical source areas. We first considered only a set of chemical concentrations in water measured from February through May 2008 and from November 2008 through February 2009. We then broadened available data to include water discharge and hydraulic-head measurements to construct a hydrogeological model using MODFLOW-2000 and to evaluate the reliability of the simplified method. The simplified model provided acceptable estimates of discharge (ranging from 0.03-0.75 m s) and diffuse nutrient inputs from water table discharge and in-stream retention phenomena. Estimates of PO-P and total P retention (ranging from 1.0 to 0.6 μg m s and from 1.18 to 0.95 μg m s for PO-P and total P, respectively) were consistent with the range of variability in literature data. In contrast, the higher temporal variability of nitrate concentrations decreased model accuracy, suggesting the need for more intensive monitoring. The model also separated the dynamics of different reaches of the drainage network and identified zones considered critical source areas and buffer zones where pollutant transport is reduced.  相似文献   

8.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   

9.
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.  相似文献   

10.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

11.
The international competitiveness of the New Zealand (NZ) dairy industry is built on low cost clover-based systems and a favourable temperate climate that enables cows to graze pastures mostly all year round. Whilst this grazed pasture farming system is very efficient at producing milk, it has also been identified as a significant source of nutrients (N and P) and faecal bacteria which have contributed to water quality degradation in some rivers and lakes. In response to these concerns, a tool-box of mitigation measures that farmers can apply on farm to reduce environmental emissions has been developed. Here we report the potential reduction in nutrient losses and costs to farm businesses arising from the implementation of individual best management practices (BMPs) within this tool-box. Modelling analysis was carried out for a range of BMPs targeting pollutant source reduction on case-study dairy farms, located in four contrasting catchments. Due to the contrasting physical resources and management systems present in the four dairy catchments evaluated, the effectiveness and costs of BMPs varied. Farm managements that optimised soil Olsen P levels or used nitrification inhibitors were observed to result in win-win outcomes whereby nutrient losses were consistently reduced and farm profitability was increased in three of the four case study farming systems. Other BMPs generally reduced nutrient and faecal bacteria losses but at a small cost to the farm business. Our analysis indicates that there are a range of technological measures that can deliver substantial reductions in nutrient losses to waterways from dairy farms, whilst not increasing or even reducing other environmental impacts (e.g. greenhouse gas emissions and energy use). Their implementation will first require clearly defined environmental goals for the catchment/water body that is to be protected. Secondly, given that the major sources of water pollutants often differed between catchments, it is important that BMPs are matched to the physical resources and management systems of the existing farm businesses.  相似文献   

12.
Artificial subsurface drainage in cropland creates pathways for nutrient movement into surface water; quantification of the relative impacts of common and theoretically improved management systems on these nutrient losses remains incomplete. This study was conducted to assess diverse management effects on long-term patterns (1998-2006) of NO, NH, and PO loads (). We monitored water flow and nutrient concentrations at subsurface drains in lysimeter plots planted to continuous corn ( L.) (CC), both phases of corn-soybean [ (L.) Merr.] rotations (corn, CS; soybean, SC), and restored prairie grass (PG). Corn plots were fertilized with preplant or sidedress urea-NHNO (UAN) or liquid swine manure injected in the fall (FM) or spring (SM). Restored PG reduced NO eightfold compared with fields receiving UAN (2.5 vs. 19.9 kg N ha yr; < 0.001), yet varying UAN application rates and timings did not affect NO across all CCUANs and CSUANs. The NO from CCFM (33.3 kg N ha yr) were substantially higher than for all other cropped fields including CCSM (average 19.8 kg N ha yr, < 0.001). With respect to NH and PO, only manured soils recorded high but episodic losses in certain years. Compared with the average of all other treatments, CCSM increased NH in the spring of 1999 (217 vs. 680 g N ha yr), while CCFM raised PO in the winter of 2005 (23 vs. 441 g P ha yr). Our results demonstrate that fall manuring increased nutrient losses in subsurface-drained cropland, and hence this practice should be redesigned for improvement or discouraged.  相似文献   

13.
ABSTRACT: This paper is a computer simulation analysis of an agricultural nonpoint pollution problem. Computer modeling is a universally applicable tool that can be used for establishing the linkages between and the quality of agricultural runoff in both surface and subsurface flow. The tradeoffs between the costs of soil conservation practices and water quality are reported, and the economic implications of such tradeoffs are discussed. Soil and nutrient losses resulting from crop production practices are analyzed using a field-scale computer simulation model (CREAMS). No-till planting, reduced tillage, and sod waterway systems are more cost effective than other practices for controlling soil and nutrient runoff losses. Nitrate leaching losses are increased slightly by most soil conservation practices. Terrace systems and permanent vegetative cover impose the greatest societal cost for water quality protection. Public cost sharing and tax incentives encourage farmers to adopt expensive structural practices, and policies are needed to get cost-effective practices implemented on critical acreage. Extensive treatment of land is necessary for agricultural best management practices (BMPs) to significantly improve water quality in areas that are intensively farmed.  相似文献   

14.
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   

15.
Nutrient removal by constructed wetlands can decline over time due to the accumulation of organic matter. A prescribed burn is one of many management strategies used to remove detritus in macrophyte-dominated systems. We quantified the short-term effects on effluent water quality and the amount of aboveground detritus removed from a prescribed burn event. Surface water outflow concentrations were approximately three times higher for P and 1.5 times higher for total Kjeldhal nitrogen (TKN) following the burn event when compared to the control. The length of time over which the fire effect was significant (P < 0.05), 3 d for TKN and up to 23 d for P fractions. Over time, the concentration of soluble reactive phosphorus (SRP) in the effluent decreased, but was compensated with increases in dissolved organic phosphorus (DOP) and particulate phosphorus (PP), such that net total P remained the same. Total aboveground biomass decreased by 68.5% as a result of the burn, however, much of the live vegetation was converted to standing dead material. These results demonstrate that a prescribed burn can significantly decrease the amount of senescent organic matter in a constructed wetland. However, short-term nutrient releases following the burn could increase effluent nutrient concentrations. Therefore, management strategies should include hydraulically isolating the burned area immediately following the burn event to prevent nutrient export.  相似文献   

16.
Chesapeake Bay has been the subject of intensive research on cultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce controllable sources of nitrogen (N) and phosphorous (P) by 40% by the year 2000, although the causes and effects of eutrophication were incompletely known. Subsequent research, modeling, and monitoring have shown that: (i) the estuarine ecosystem had been substantially altered by increased loadings of N and P of approximately 7- and 18-fold, respectively; (ii) hypoxia substantially increased since the 1950s; (iii) eutrophication was the major cause of reductions in submerged vegetation; and (iv) reducing nutrient sources by 40% would improve water quality, but less than originally thought. Strong public support and political commitment have allowed the Chesapeake Bay Program to reduce nutrient inputs, particularly from point sources, by 58% for P and 28% for N. However, reductions of nonpoint sources of P and N were projected by models to reach only 19% and 15%, respectively, of controllable loadings. The lack of reductions in nutrient concentrations in some streams and tidal waters and field research suggest that soil conservation-based management strategies are less effective than assumed. In 1997, isolated outbreaks of the toxic dinoflagellate Pfiesteria piscicida brought attention to the land application of poultry manure as a contributing factor to elevated soil P and ground water N concentrations. In addition to developing more effective agricultural practices, emerging issues include linking eutrophication and living resources, reducing atmospheric sources of N, enhancing nutrient sinks, controlling sprawling suburban development, and predicting and preventing harmful algal blooms.  相似文献   

17.
Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.  相似文献   

18.
ABSTRACT: Riparian buffers are increasingly important as watershed management tools and are cost‐shared by programs such as Conservation Reserve that are part of the USDA Conservation Buffer Initiative. Riparian buffers as narrow as 4.6m (15ft) are eligible for cost‐share by USDA. The Riparian Ecosystem Management Model (REMM) provides a tool to judge water quality improvement by buffers and to set design criteria for nutrient and sediment load reduction. REMM was used for a Coastal Plain site to simulate 14 different buffers ranging from 4.6 m to 51.8 m (15 to 170 ft) with three different types of vegetation (hardwood trees, pine trees, and perennial grass) with two water and nutrient loads. The load cases were low sediment/low nutrient‐typical of a well managed agricultural field and low sediment/high nutrient‐typical of liquid manure application to perennial forage crops. Simulations showed that the minimum width buffer (4.6 m) was inadequate for control of nutrients under either load case. The minimum width buffer that is eligible for cost share assistance on a field with known water quality problems (10.7 m, 35 ft) was projected to achieve at least 50 percent reduction of N, P, and sediment in the load cases simulated.  相似文献   

19.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of nutrients in streams. The objectives of this study were to determine the effects of P-based manure applications on total suspended solids (TSS) and nutrient losses from dairy manures and poultry litter surface applied to pasturelands and to compare the nutrient losses transported to the edge of the field during overland flow events. Two sets of plots were established: one set for the study of in-field release and another set for the study of edge-of-the-field nutrient transport. Release plots were constructed at three pastureland sites (previous poultry litter applications, previous liquid dairy manure application, and no prior manure application) and received four manure treatments (turkey [Meleagris gallopavo] litter, liquid dairy manure, standard cowpies, and none). Pasture plots with a history of previous manure applications released higher concentrations of TSS and higher percentages of total P (TP) in the particulate form. Transport plots were developed on pasture with no prior manure application. The average flow-weighted TP concentrations were highest in runoff samples from the plots treated with cowpies (1.57 mg L(-1)). Reducing excess P in dairy cow diets and surface applying manure to the land using P-based management practices did not increase N concentrations in runoff. This study found that nutrients are most transportable from cowpies; thus a buffer zone between pastureland and streams or other appropriate management practices are necessary to reduce nutrient losses to waterbodies.  相似文献   

20.
Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication. There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We used the shallow lake model PCLake to evaluate the effects of three measures (reducing external nutrient loading, increasing relative marsh area, and increasing exchange rate between open water and marsh) on water quality improvement. Furthermore, the contribution of different retention processes was calculated. Settling and burial contributed more to nutrient retention than denitrification. The model runs for a typical shallow lake in The Netherlands showed that after increasing relative marsh area to 50%, total phosphorous (TP) concentration in the surface water was lower than the Maximum Admissible Risk (MAR, a Dutch government water quality standard) level, in contrast to total nitrogen (TN) concentration. The MAR levels could also be achieved by reducing N and P load. However, reduction of nutrient concentrations to MAR levels did not result in a clear lake state with submerged vegetation. Only a combination of a more drastic reduction of the present nutrient loading, in combination with a relatively large marsh cover (approximately 50%) would lead to such a clear state. We therefore concluded that littoral marsh areas can make a small but significant contribution to lake recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号