首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity.  相似文献   

2.
Although fish are usually thought of as victims of water quality degradation, it has been proposed that some planktivorous species may improve water quality through consumption of algae and sequestering of nutrients via growth. Within most numerical water quality models, the highest trophic level modeled explicitly is zooplankton, prohibiting an investigation of the effect a fish species may be having on its environment. Conversely, numerical models of fish consumption do not typically include feedback mechanisms to capture the effects of fish on primary production and nutrient recycling. In the present study, a fish bioenergetics model is incorporated into CE-QUAL-ICM, a spatially explicit eutrophication model. In addition to fish consumption of algae, zooplankton, and detritus, fish biomass accumulation and nutrient recycling to the water column are explicitly accounted for. These developments advance prior modeling efforts of the impact of fish on water quality, many of which are based on integrated estimates over an entire system and which omit the feedback the fish have through nutrient recycling and excretion. To validate the developments, a pilot application was undertaken for Atlantic menhaden (Brevoortia tyrannus) in Chesapeake Bay. The model indicates menhaden may reduce the algal biomass while simultaneously increasing primary productivity.  相似文献   

3.
Transfer of soil contaminants into the food chain has long been a concern. However, certain aspects of the pathways involved have not been fully investigated. One is the enrichment of contaminant concentrations through physical processes such as size-sorting of soil particles. Fine particles selected from soil by processes such as adhesion onto plants will have much higher contaminant concentrations than the original soil. A saturation kinetics model of the process of soil adhesion to leaf surfaces was developed. The model helps identify the parameters that are least-well known and need experimental support. The ratio of clay and sand wash-off half times was especially important. With nominal values for the input parameters, estimated enrichments agreed well with observations to date, and ranged from slightly over unity for medium- and fine-textured soils to about tenfold for sandy soils. With a few reasonable assumptions, the model was generalised to apply to other soil adhesion scenarios such as adhesion to skin. The generalised model can be applied with minimal need for setting-specific information.  相似文献   

4.
Fundamental hydrodynamic and ecological processes of a lake or reservoir could be adequately depicted by one-dimensional (1D) numerical simulation models. Whereas, lakes with significant horizontal water quality and hydrodynamic gradients due to their complex morphometry, inflow or water level fluctuations require a three-dimensional (3D) hydrodynamics and ecological analyses to accurately simulate their temporal and spatial dynamics. In this study, we applied a 3D hydrodynamic model (ELCOM) coupled with an ecological model (CAEDYM) to simulate water quality parameters in three bays of the morphologically complex Lake Minnetonka. A considerable effort was made in setting up the model and a systematic parameterization approach was adopted to estimate the value of parameters based on their published values. Model calibration covered the entire length of the simulation periods from March 29 to October 20, 2000. Sensitivity analysis identified the top parameters with the largest contributions to the sensitivity of model results. The model was next verified with the same setup and parameter values for the period of April 25 to October 10, 2005 against field data. Spatial and temporal dynamics were well simulated and model output results of water temperature (T), dissolved oxygen (DO), total phosphorus (TP) and one group of algae (Cyanobacteria) represented as chlorophyll a (Chla) compared well with an extensive field data in the bays. The results show that the use of the model along with an accurate bathymetry, a systematic calibration and corroboration (verification) process will help to analyze the hydrodynamics and geochemical processes of the morphologically complex Lake Minnetonka. An example of an ecological application of the model for Lake Minnetonka is presented by examining the effect of spatial heterogeneity on coolwater fish habitat analysis in 3D and under a scenario where horizontal spatial heterogeneity was eliminated (1D). Both analyses captured seasonal fish habitat changes and the total seasonal averages differed moderately. However, the 1D analysis did not capture local and short duration variabilities and missed suitable fish habitat variations of as much as 20%. The experiment highlighted the need for a 3D analysis in depicting ecological hot spots such as unsuitable fish habitats in Lake Minnetonka.  相似文献   

5.
In this work the flushing features of a tidal active coastal basin, the Venice lagoon, have been investigated. The water transport time scale (TTS) has been computed by means of both an eulerian and a lagrangian approach. The obtained results have been compared in order to identify the main differences between the two methods.  相似文献   

6.
The nitrification process in many river water quality models has been approximated by a simple first order dependency on the water column ammonia concentration, while the benthic contribution has routinely been neglected. In this study a mathematical framework was developed for sediment bed nitrification based on mass transfer theory and Monod bacterial growth kinetics. The model describes ammonia transport across the boundary layer and consumption within the biofilm to quantify the overall nitrification flux. Model results suggest that nitrification is usually controlled by the boundary layer thickness, and we estimated a nitrification velocity range between 0.14 and 0.97 m d−1, assuming typical boundary thicknesses of 0.1–1.0 mm. These ranges compared favorably with reported literature values, including our own measurements. The model was applied to several river systems of different depths where nitrification rates and river depths were available. Assuming that nitrification is exclusively a benthic process, the average velocity of all the rivers evaluated was 0.85 m d−1 (r2 = 0.72).  相似文献   

7.
This study investigated efficiency of in situ enhanced biological denitrification of nitrate-contaminated groundwater which employs a well-to-well circulation in a shallow zone where oxygen might give an adverse affect on the denitrification processes. The numerical model developed for the efficiency test included sequential aerobic and nitrate-based respiration, multi-Monod kinetics of reactive components, growth and decay of biomass, and denitrification inhibition associated with the presence of oxygen. Moreover, reaction kinetics for production of toxic intermediates such as nitrite and nitrous oxide were also included in the model. The developed model was applied to the analysis of enhanced in situ denitrification using an injection/extraction well pair. To evaluate the relative remediation effectiveness, comparisons were made between a continuous fumarate injection test (CFIT) system and a pulsed fumarate injection test (PFIT) system, where both systems had the same total fumarate mass injected into the aquifer. The PFIT system was preferable to the CFIT system because of the high possibility of occurrence of clogging in the latter case at the injection well, with no other significant advantages found in either the CFIT or the PFIT system. Accordingly, this developed numerical model is useful to predict and evaluate an in situ bioremediation by denitrification in aquifers.  相似文献   

8.
Standard laboratory toxicity tests assess the physiological responses of individual organisms to exposure to toxic substances under controlled conditions. Time and space restrictions often prevent the assessment of population-level responses to a toxic substance. Contaminants can affect various biological functions (e.g. growth, fecundity or behavior), which may alter different demographic traits, leading to population-level impacts. In this study, immune suppression, reproductive dysfunction and somatic growth impairment were examined using life history matrix models for coho salmon (Oncorhynchus kisutch), sockeye salmon (Oncorhynchus nerka) and chinook salmon (Oncorhynchus tshawytscha). Our intent was to gauge the relative magnitude of response to toxic effects among species and between life history stages, not provide a specific estimate of population growth rate or abundance. Effects due to immune suppression were modeled as reductions in age-specific survival. Toxic impacts on reproductive function were modeled as a 10% reduction in reproductive contribution for all reproductively mature age groups. Model runs that examined the effect of somatic growth reduction on population parameters incorporated both survival and reproductive impacts. All impacts were modeled as 10% reductions in the affected population demographic parameters. First-year survival and reproductive impacts produced similar population growth rates (λ), but resulted in different sensitivity and stable age distributions. Modeled somatic growth reduction produced additive effects on survival and reproduction. Toxic stressors producing similar changes in λ did not necessarily produce similar changes in the age distributions. Sensitivity and elasticity analyses demonstrated that changes to the first-year survival rate produced the greatest per-unit effect on λ for each species. Alteration in abundance of mature females also strongly influenced λ. Differences observed between species showed that the number of reproductive ages and time to reproductive maturity were important components for population-level responses. These results emphasize the importance of linking toxicity responses at low concentrations to the demographic traits they affect, and help to highlight the toxicity tests that are more suitable for assessing impacts on the focal species. Additionally, life history modeling is a useful tool for developing testable hypotheses regarding impacts on specific populations as well as for conducting comparisons between populations.  相似文献   

9.
10.
殷逢俊  李多松 《环境化学》2012,31(3):269-277
首先建立了微生物衰减系数和污泥浓度、底物浓度的函数关系式,带入Lawrence-McCarty第一方程式得到了Logistic方程形式的微生物生长方程式.在分析污泥泥龄和污泥停留时间关系基础上,引入Monod方程建立了活性污泥动力学模型,推导证明了Lawrence-McCarty方程式是模型静态条件下的表达形式.用建立的活性污泥动力学模型对完全混合式污泥系统进行了模拟,并分析了水力停留时间Hydraulic retention time(HRT)和污泥停留时间Sludge retention time(SRT)对完全混合式污泥系统的影响,表明模型能很好地对活性污泥系统的动态过程进行模拟.根据模型编程画出了污泥系统相关变量关于HRT和SRT变化的三维曲面图,通过编程将复杂模型看作一定输入输出的函数,使得模型更易于应用和推广.  相似文献   

11.
在当前的计算机软件设计中,大型软件系统基本上是采用面向对象方法来进行设计的,统一建模语言UML是面向对象分析和设计过程中重要的建模工具.本文以学籍管理系统的开发为实例,介绍UML如何辅助完成用例建模、静态建模和动态建模.  相似文献   

12.
In forest management and ecological research, consideration of the impacts and risks of climate change or management optimisation is complex. Computer models have long been applied as tools for these tasks. Process-based forest growth models claim to overcome the limitations of empirical statistical models, but the capacity of different process-based models and modelling approaches have rarely been compared directly. This study evaluates stepwise multiple regression models in comparison to four process-based modelling approaches (3-PG, 3-PG+, CABALA and Forest-DNDC) for greenfield predictions of Eucalyptus globulus plantation growth from 2 to 8 years after planting throughout southern Australia.  相似文献   

13.
•PAN concentrations at a rural site near Beijing were monitored from 2015 to 2019. •PAN concentrations exhibited high values in spring and low values in winter. •Anomalously southerlies induced extreme high PAN concentration in spring 2018. Peroxyacetyl nitrate (PAN) is one of the most important photochemical pollutants and has aroused much concern in China in recent decades. However, few studies described the long-term variations in PAN in China. In this study, we continuously monitored the PAN, O3 and NOx concentrations at a regional background site near Beijing from August 2015 to February 2019. Based on the observed concentrations and climate data, we analyzed the seasonal PAN variations. The results revealed that the monthly mean PAN concentration ranged from 0.33–2.41 ppb, with an average value of 0.94 ppb. The PAN concentration exhibited a distinct seasonal variation, with high values in spring and low values in winter. After analyzing the corresponding meteorological data, we found that stronger ultraviolet (UV) radiation, a relatively longer lifetime and a higher background PAN concentration contributed to the high PAN concentrations in spring. In addition, with the utilization of the WRF-Chem (Weather Research and Forecasting with Chemistry) model, the cause of the extremely high PAN concentration in spring 2018 was determined. The model results demonstrated that an anomalously low pressure and the southwesterly winds in northern China might be the main causes of the increased PAN concentration in Beijing and its surrounding area in spring 2018.  相似文献   

14.
Landslides are very common natural problems in the Selangor area of Malaysia due to the improper use of landcover and tropical rainfall. There are many landslide susceptibility analyses such as statistical, bivariate and data mining approaches exist in the literature. This paper presents the use of fuzzy logic relations for landslide susceptibility mapping on part of Selangor area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. At first, landslide locations were identified in the study area from the interpretation of aerial photographs and satellite images, supported by extensive field surveys. Topographic and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Thirteen landslide conditioning factors such as slope gradient, slope exposure, plan curvature, altitude, stream power index, topographic wetness index, distance from drainage, distance from road, lithology, distance from faults, soil, landcover and normalized difference vegetation index (ndvi) were extracted from the spatial database. These factors were analyzed using fuzzy logic relations to produce the landslide susceptibility maps. Using the landslide conditioning factors and the identified landslides, the fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership values for landslide susceptibility mapping. Finally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values were calculated. Landslide locations were used to validate results of the landslide susceptibility maps and the validation results showed 94% accuracy for the fuzzy gamma operator employing all parameters produced in the present study as the landslide conditioning factors. Results showed that, among the fuzzy relations, in the case in which the gamma operator (λ =  0.975) showed the best accuracy (94.73%) while the case in which the fuzzy algebraic Or was applied showed the worst accuracy (84.76%). The landslide susceptibility maps produced by the fuzzy gamma operators shows similar trends as those obtained by applying logistic regression procedure by the same author and indicate that fuzzy relations results perform slightly better than the earlier method. Qualitatively, the model yields reasonable results which can be used for preliminary land-use planning purposes.  相似文献   

15.
16.
Patterns of zooplankton vertical movement are often difficult to interpret because of multiple, complex and confounding environmental factors. Behavioural adaptations to these environmental variables are compared within and between the holo- and meroplankton constituents of a community. We used a nested design to analyse patterns at several scales in time; (semi-diel, diel, spring-neap tidal cycle and season) and two in space; (depth and site). To reduce complexity and aid interpretation we studied a semi-isolated community in a semi-enclosed, seasonally stratified sea lough (Lough Hyne Marine Nature Reserve, Ireland). In this, the main environmental gradient was water flow rate (or water residence time) caused by tidal currents. Vertical profiles of abundance showed that populations of the most abundant species of holo- and meroplankton in the lough have considerable behavioural plasticity, enabling them to switch between sedentary and migratory behaviour and patterns of migration. Some species migrate vertically in synchrony with diel cycles and others in response to semi-diel tidal currents; a few do both, but the majority did neither. It is suggested that water column structure and hydrographic discontinuities caused by flow rate and pycnocline dynamics are responsible for the variable patterns of vertical migration and distribution.Communicated by J.P. Thorpe, Port Erin  相似文献   

17.
This paper describes the QUIC-URB fast response urban wind modeling tool and evaluates it against wind tunnel data for a 7 × 11 cubical building array and wide building street canyon. QUIC-URB is based on the Röckle diagnostic wind modeling strategy that rapidly produces spatially resolved wind fields in urban areas and can be used to drive urban dispersion models. Röckle-type models do not solve transport equations for momentum or energy; rather, they rely heavily on empirical parameterizations and mass conservation. In the model-experiment comparisons, we test two empirical building flow parameterizations within the QUIC-URB model: our implementation of the standard Röckle (SR) algorithms and a set of modified Röckle (MR) algorithms. The MR model attempts to build on the strengths of the SR model and introduces additional physically based, but simple parameterizations that significantly improve the results in most regions of the flow for both test cases. The MR model produces vortices in front of buildings, on rooftops and within street canyons that have velocities that compare much more favorably to the experimental results. We expect that these improvements in the wind field will result in improved dispersion calculations in built environments.  相似文献   

18.
19.
There is no alternative to the world’s water resources, and their increasing scarcity is making it difficult to meet the world population’s water needs. This paper presents a sustainable water resources system (SWRS) and analyzes the operating mechanism that makes it possible to evaluate the status of such a system. A SWRS can be described as a complex coupling system that integrates water resources, social, economic and ecological systems into a whole. The SWRS’s operating mechanism is composed of dynamic, resistance and coordination components, and it interacts with and controls the system’s evolution process. The study introduces a new approach, set pair analysis theory, to measure the state of a SWRS, and an evaluation index system is established using the subsystems and operating mechanism of a SWRS. The evaluation index system is separated into three levels (goal level, criteria level and index level) and divides the index standard into five grades. An evaluation model of the SWRS based on set pair analysis theory is constructed, and an example of SWRS evaluation in Shanghai is presented. The connection degrees of the index in the three levels are calculated, and the connection degree of the goal index is calculated to be 0.342, which classifies the city’s SWRS condition as grade 2. The sustainable use of water resources in the region is determined to be at a relatively adequate level that meets the requirements of sustainable development.  相似文献   

20.
Continuous and count data demand system models have emerged as attractive alternatives to the discrete choice random utility maximization models (RUMs) that currently dominate the seasonal, multi-site recreation demand literature. This paper compares the frameworks conceptually and investigates their empirical performance with a common data set. Although the two modeling approaches employ substantially different behavioral and econometric assumptions, results from a recreation application based on the 1997 Iowa Wetlands Survey suggest that qualitatively similar policy inferences arise from the competing structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号