首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 77 毫秒
1.
采用循环微电解法处理染料废水,测量水样的COD值、pH值、色度等指标.结果表明,色度去除率可高达95%,且脱色迅速;COD值的去除率约为60%.使用循环微电解法可以对染料废水进行预处理,很大程度上提高废水的可生化性,为染料废水的进一步生化处理创造条件.  相似文献   

2.
铁炭微电解+A/O工艺处理染料废水的研究   总被引:3,自引:0,他引:3  
采用铁炭微电解法 A/O工艺对染料废水进行处理.对影响铁炭微电解处理效率的各种因素及R/O工艺的条件进行了研究.结果表明,铁炭微电解法预处理染料废水的最佳初始pH值为3,最佳混凝pH值为7.5,最佳铁炭比为1:1.1.适宜的反应时间为30 min,BOD5/COD由0.19提高到0.37;生物反应池内pH值为6.5-7,水温35-40℃,厌氧段水力停留时间8 h,好氧段水力停留时间20 h.整套工艺对COD和色度的去除率分别可达到90%和95%,出水水质达到了国家<污水综合排放标准>(;88978-1996)一级.  相似文献   

3.
微电解-H_2O_2处理印染废水的实验研究   总被引:3,自引:0,他引:3  
介绍了铁炭微电解-H2O2预处理难降解染料废水的实验研究.采用铁炭微电解法预处理难降解染料废水.当进水pH值为4,铁炭质量比为2∶1,停留时间为30 min时.出水BOD5/COD较原水提高0.24.若在铁屑过滤出水中加入H2O2 8 mL/L,出水BOD5/COD为0.41,比铁炭微电解出水提高0.14,有利于后续采用生化法处理.  相似文献   

4.
Fenton强化微电解工艺处理靛蓝牛仔布印染废水研究   总被引:1,自引:0,他引:1  
研究了铁炭微电解-Fenton试剂作用下靛蓝牛仔布印染废水的脱色和COD去除行为,通过正交试验和单因素试验确定了微电解-Fenton反应的最佳操作条件,分析了各影响因子的作用机理。结果表明:在铁炭质量比为2∶1,pH值为3的条件下反应90 min,铁炭微电解出水COD的去除率在49.20%,色度去除率达到80%,BOD5/COD值由0.248上升至0.436,可生化性提高;微电解出水在pH值为5,H2O2投加量为0.3%条件下反应60 min后,COD去除率可达84.1%,色度去除率达90%,BOD5/COD值上升至0.525;铁炭微电解-Fenton组合工艺COD的总去除率为87.26%。  相似文献   

5.
钴基和铜基类Fenton催化剂是近年来的研究热点,对新型类Fenton催化剂进行SEM,EDS,XPS表征,得知催化剂中的金属元素主要为钴和铜。通过单因素分析法,研究影响该催化剂处理甲基橙模拟废水效果的因素。结果表明:该催化剂在pH为3~9的范围内均表现出较好的催化降解能力;当双氧水的添加量达到20 mL/L时,催化降解能力不再增加;催化剂的投加量影响催化降解能力达到最大的时间;此外,双氧水的投加方式影响降解所需的时间而对最终的处理效果影响不大。  相似文献   

6.
粉煤灰处理活性艳红KD-8B染料废水的研究   总被引:4,自引:0,他引:4  
研究了废水的pH值和粉煤灰的投加量对活性艳红KD-8B染料废水脱色效果的影响,并考察了粉煤灰经酸化改性、加热活化和碱化改性后的脱色能力.结果表明:最佳pH值为12.3;未经改性的粉煤灰脱色效果不好且投加量大;碱改性粉煤灰的脱色效果最佳,脱色率可达99.9%以上,对高浓度活性艳红废水,脱色率也能达95%以上.  相似文献   

7.
零价铁处理模拟染料废水的实验研究   总被引:2,自引:0,他引:2  
以模拟染料废水为研究对象,实验主要研究的影响因素有铁屑投加量、pH值和反应时间等.结果表明处理效果随着铁屑投加量和反应时间的增加而提高,随pH值的升高而下降.最佳条件下废水的脱色率达到95%以上,COD的去除率也可达到73%左右.此法成本低廉,处理效果好.  相似文献   

8.
微电解混凝法处理LAS废水的研究   总被引:9,自引:0,他引:9  
采用微电解混凝沉淀法处理合成洗涤剂废水,考察了铁炭比、pH值、接触时间及混凝沉淀对处理效果的影响,处理后出水中的LAS、CODcr和pH值3项指标均达到国家排放标准.  相似文献   

9.
钢铁行业冷轧、硅钢生产过程中产生大量的含铬废水,目前一般采用亚硫酸钠还原法处理,药剂消耗量非常大。在2 m3/h的中试规模上研究了铁/碳微电解还原工艺对钝化液含铬废水的处理,六价铬通过铁炭填料后浓度有一定降低,废水pH稍有升高,氧化还原电位降低。研究结果表明,铁炭微电解工艺对于钝化液含铬废水有一定的处理效果,但由于可能存在含铬废水对铁屑表面造成钝化导致处理不够彻底。经济效益分析表明,微电解技术相比单独采用亚硫酸钠还原法有一定的成本优势,且处理出水效果好,可直接排放,不会产生二次污染。  相似文献   

10.
微电解法对高浓度染料废水的脱色作用研究   总被引:1,自引:0,他引:1  
以难生化降解的甲基橙为实验染料,采用铁碳微电解法对高浓度染料废水脱色进行模拟实验.主要研究了水力停留时间(HRT)、温度和pH值对色度去除率的影响和铁碳床的再生条件.室温(20℃)条件下,最佳实验条件为:HRT=30 min,pH=5-6,铁碳床运行周期为20 h.废水温度提高有利于提高脱色效果.实验结果表明,400mg/L的甲基橙实验水样,在最佳实验条件下经过微电解法处理,色度去除率可达85%以上,CODCr去除率达到30%左右.在相同实验条件下,铁碳微电解法处理混合染料废水,色度去除率降低到64.7%.铁碳床运行失效后,用6%~8%的稀硫酸循环再生1 h,可继续使用,运行效果良好,但运行周期有所缩短.  相似文献   

11.
采用Fenton反应对活性皂青印染废水进行降解试验,考察了Fenton试剂摩尔比、硫酸亚铁和双氧水的投加量、pH值、反应温度等因素对印染废水色度去除率和COD去除率的影响,优化了Fenton反应降解活性皂青印染废水的适宜工艺条件。结果表明,在FeSO4/H2O2摩尔比为2∶3,废水pH值为5.0,反应温度为40℃的条件下,Fenton反应对活性皂青印染废水有很好的处理效果:印染废水色度去除率达到99.9%,COD去除率达到89.4%。  相似文献   

12.
采用Fenton试剂氧化法处理某钢铁厂焦化废水,对影响Fenton试剂处理焦化废水效果的因素进行分析,包括H_2O_2投加量、n[Fe~(2+)]∶m[H_2O_2]、p H值、反应温度、反应时间等。结果表明,对于该焦化废水最佳反应条件为:H_2O_2投加量50 m L/L(即每升水样投加量为50 m L),n[Fe~(2+)]∶m[H_2O_2]=1∶10,p H=3,反应温度为30℃,反应时间30 min,废水COD去除率可达到70%~79%。该研究为高浓度难降解废水处理提供了数据支持。  相似文献   

13.
采用UV-Fenton氧化法对聚醚废水预处理,通过正交和单因素试验探讨了H2O2投加量、Fe2+投加量、p H值及光照时间各因素对废水COD去除率的影响,确定p H值为3、H2O2投加量40 m L/L、n(H2O2)/n(Fe2+)=9、光照时间90 min为最佳反应条件,COD去除率可达70%以上,经氧化预处理后废水的BOD/COD值由0.19提至0.37,可生化性较大提高,可满足后续生化处理的要求。  相似文献   

14.
采用UV/Fenton氧化法对某树脂厂甲醛废水进行预处理,通过单因素试验和正交试验探讨了H2O2和Fe2+投加量、反应时间及pH值等因素对废水COD和HCHO去除率的影响。综合考虑经济性和去除效果,确定了最佳反应条件:H2O2投量为10 g/L,Fe2+投量为1.2 g/L,反应时间50 min,原水pH值8.23。在此条件下,COD和HCHO的去除率可分别达到48.18%和99.74%,反应符合一级反应动力学。废水可生化性(BOD5/COD)从初始的0.25提高到0.43,为废水的后续生化处理创造了条件。  相似文献   

15.
研究Fenton和UV-Fenton两种工艺对苯酚的降解效率。分批研究优化p H值、温度、H2O2浓度和Fe2+浓度。在最优条件下,比较了两种工艺降解苯酚的效果。结果表明,UV-Fenton工艺比传统的Fenton工艺增加了降解和矿化效率,最大的矿化效率分别是98%和40%。在Fenton工艺中,苯酚的最终产物是羧酸如醋酸和草酸,而在UV-Fenton工艺中,这些离子在苯酚降解的早期阶段形成,在120 min的反应时间内几乎完全氧化。在UV-Fenton工艺中Fe2+浓度为0.4 mmol/L,而Fenton工艺中Fe2+浓度为0.8 mmol/L。  相似文献   

16.
实验采用Fenton氧化与活性炭吸附相结合的方法处理高浓度工业废水,考察了Fenton反应和活性炭吸附影响COD去除率的的最佳条件。结果表明,Fenton反应的最佳条件为H2O2∶COD=2,Fe2+∶H2O2=1∶4,反应pH=3,反应时间采用60 min。活性炭柱吸附最佳用量采用15 g活性炭吸附50mL Fenton反应后水样,两者结合COD最大去除率达到85.47%。  相似文献   

17.
通过实验研究了Fenton体系中羟基自由基的生成规律,考察了H2O2浓度、FeSO4浓度、pH值3个因素对羟基自由基生成规律的影响,这3个因素对羟基自由基的生成均有较大的影响;采用"生成率"实验确定最佳操作条件,分析了Fenton试剂降解中年期垃圾渗滤液COD的动力学过程,将其分为2个近一级反应,反应速率常数分别为-538.5 mg/(L·h)和-30.3 mg/(L·h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号