首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
Fenton强化微电解工艺处理靛蓝牛仔布印染废水研究   总被引:1,自引:0,他引:1  
研究了铁炭微电解-Fenton试剂作用下靛蓝牛仔布印染废水的脱色和COD去除行为,通过正交试验和单因素试验确定了微电解-Fenton反应的最佳操作条件,分析了各影响因子的作用机理。结果表明:在铁炭质量比为2∶1,pH值为3的条件下反应90 min,铁炭微电解出水COD的去除率在49.20%,色度去除率达到80%,BOD5/COD值由0.248上升至0.436,可生化性提高;微电解出水在pH值为5,H2O2投加量为0.3%条件下反应60 min后,COD去除率可达84.1%,色度去除率达90%,BOD5/COD值上升至0.525;铁炭微电解-Fenton组合工艺COD的总去除率为87.26%。  相似文献   

2.
采用Fenton氧化法降解硝化棉生产废水中的COD,考察了Fenton氧化主要参数对COD去除效果的影响。结果表明:在H_2O_2投加量为600 mg/L,n(Fe~(2+)):n(H_2O_2)=2:3,不调节pH值(初始pH值1),反应时间60 min,反应温度40℃时,废水的COD可以从263 mg/L降解到49.2 mg/L,COD去除率达到81.3%。Fenton氧化之后,投加氢氧化钙5 g/L中和,PAM 2 mg/L混凝沉淀,出水COD和pH值稳定达到GB 8978—1996《污水综合排放标准》一级排放标准。  相似文献   

3.
Fenton氧化技术处理硝基苯废水的实验研究   总被引:2,自引:0,他引:2  
利用Fenton试剂法对硝基苯废水进行处理,采用正交实验和单因素实验研究H2O2用量、Fe(Ⅱ)浓度、pH值和反应时间等4个主要因素对氧化效果的影响,确定反应的最佳工艺条件为:当Fe(Ⅱ)质量浓度为50 mg/L,pH值在5.7左右,H2O2质量浓度为300 mg/L,反应50 min,体系中硝基苯去除率可达到94%以上,COD去除率可达36.52%.另外,深入研究其他过渡金属离子如Fe(Ⅲ)、Cu(Ⅱ)等对Fenton氧化反应过程的影响,结果发现Mn(Ⅱ)和Fe(Ⅲ) 作催化剂更有利于COD去除率的提高,且Mn(Ⅱ)/H2O2体系的反应溶液色度最小.  相似文献   

4.
采用UV/Fenton法氧化降解废水中的邻苯二甲酸二丁酯,原水质量浓度为40 mg/L,考察了H2O2加入量、硫酸亚铁加入量、pH值、氧化时间、反应温度对降解率的影响,通过单因素及优化实验确定了最佳工艺条件:H2O2量(30%)为10 mL,硫酸亚铁量为50 g/L,pH值为5,氧化时间为45 min,反应温度为25℃。对优化实验验证,降解后废水质量浓度为0.4 mg/L,去除率达到99%。  相似文献   

5.
实验采用Fenton氧化与活性炭吸附相结合的方法处理高浓度工业废水,考察了Fenton反应和活性炭吸附影响COD去除率的的最佳条件。结果表明,Fenton反应的最佳条件为H2O2∶COD=2,Fe2+∶H2O2=1∶4,反应pH=3,反应时间采用60 min。活性炭柱吸附最佳用量采用15 g活性炭吸附50mL Fenton反应后水样,两者结合COD最大去除率达到85.47%。  相似文献   

6.
采用UV/Fenton氧化法对某树脂厂甲醛废水进行预处理,通过单因素试验和正交试验探讨了H2O2和Fe2+投加量、反应时间及pH值等因素对废水COD和HCHO去除率的影响。综合考虑经济性和去除效果,确定了最佳反应条件:H2O2投量为10 g/L,Fe2+投量为1.2 g/L,反应时间50 min,原水pH值8.23。在此条件下,COD和HCHO的去除率可分别达到48.18%和99.74%,反应符合一级反应动力学。废水可生化性(BOD5/COD)从初始的0.25提高到0.43,为废水的后续生化处理创造了条件。  相似文献   

7.
Fenton试剂在处理高岭土选矿废水中的应用研究   总被引:2,自引:1,他引:1  
介绍了Fenton试剂处理难降解有机废水的作用机理,初步探讨了H2O2投加量、硫酸亚铁用量及反应时间对水样处理效果的影响.结果表明:仅H2O2作用时,色度去除率达到98%以上,处理后水样色度小于5;在硫酸亚铁投加量为150mg/L时,氧化后废水的COD质量浓度只有29.62 mg/L;水样甲醛在反应10min时去除率超过99%,反应2 h后无机离子浓度大大降低.  相似文献   

8.
为了考察铁、铝电极电絮凝法处理纺织废水的效果和影响因素,以铁板和铝板为电极对纺织废水进行了电絮凝处理,考察了初始pH值、电流密度、电絮凝时间对COD去除率、色度去除率、电能消耗及电极损失的影响。结果表明:初始pH值为7时,铁、铝电极电絮凝后最终pH值均有上升,但均未超过8,无需调节pH值;随电流密度增加,COD去除率、色度去除率、电能消耗及电极损失呈上升趋势,电流密度为7.5 mA/cm2时,铁电极的COD去除率可达72%,色度去除率可达89.1%,高于铝电极;电絮凝时间为15 min时,铁电极的COD去除率可达到76%,色度去除度可达90%,高于铝电极,且电能消耗低于铝电极。研究表明,铁电极电絮凝法处理纺织废水具有技术可行性,最佳试验条件为:初始pH值中性,电流密度7.5 mA/cm2,电絮凝时间15 min。  相似文献   

9.
湿式过氧化氢氧化法处理吡虫啉农药废水研究   总被引:3,自引:0,他引:3  
为优化反应条件,在2 L压力反应器内,对吡虫啉农药废水进行湿式过氧化氢氧化(WPO)和催化湿式过氧化氢氧化(CWPO)降解处理,考察了过氧化氢加入量、反应温度、进水pH值和催化剂等对反应过程与污染物降解的影响规律.结果表明,WPO和CWPO能在温和的条件下降解难于生物降解的吡虫啉农药废水.温度为110℃,压力为0.6 Mpa,过氧化氢用量为理论用量.进水pH值为3.5的条件下,WPO处理吡虫啉农药废水,COD去除率为47.7%;采用非均相Cu-Ni-Ce/SiO2催化剂,pH值为7.0.其他条件相同时,CWPO对相同吡虫啉农药废水的COD去除率可达89.1%.计算得CWPO和WPO基于COD的第1阶段表观活化能分别为11.2 kJ/mol和29.6 kJ/mol.湿式过氧化氢氧化法为农药废水的处理提供了一种经济有效的方法.  相似文献   

10.
采用UV/Fenton联合氧化法处理糖精钠工业废水,首先单因素实验研究了H_2O_2浓度、FeSO_4浓度、初始pH值和反应时间对糖精钠废水处理效果的影响,并利用响应面优化实验得到了最优条件:反应时间110 min,pH值为6,FeSO_4用量为5 g/L,H_2O_2用量为78 mL/L。响应面实验的结果表明,影响因子的显著性为H_2O_2用量FeSO_4用量反应时间初始pH值;FeSO_4用量和H_2O_2用量的交互作用显著;数学模型回归性较好。以最优条件处理后的糖精钠废水COD去除率为89.8%,BOD去除率为72.7%,TOC去除率为79.2%,同时,色度、悬浮物和氨氮去除率分别达到98.4%,90.9%,98.6%,BOD/COD比值由0.24提高到0.64,糖精钠废水可生化性得到了很大提高,为后续进入工业园区污水处理厂生化处理奠定了基础。  相似文献   

11.
US/Fenton试剂协同处理焦化废水的研究   总被引:2,自引:0,他引:2  
采用US (超声波)协同Fenton试剂氧化法处理焦化废水,考察了H2O2投加量、Fe2 投加量、废水的pH、反应时间和超声波功率对处理效果的影响,确定了最佳工艺条件.结果表明,在H2O2投加量7.0 g/L;Fe2 投加量500 mg/L;pH=3.0; 反应时间 40 min; 超声波功率 600 W 的条件下,COD、NH3-N、CN-和色度的去除率分别达95.8%、71.3%、69.5%和75.2%,出水COD降至41.0 mg/L.在相同条件下,US/Fenton试剂协同法的处理效率比单独Fenton试剂氧化法的处理效率提高了约20%,且反应时间显著缩短.  相似文献   

12.
采用Fenton试剂氧化法处理某钢铁厂焦化废水,对影响Fenton试剂处理焦化废水效果的因素进行分析,包括H_2O_2投加量、n[Fe~(2+)]∶m[H_2O_2]、p H值、反应温度、反应时间等。结果表明,对于该焦化废水最佳反应条件为:H_2O_2投加量50 m L/L(即每升水样投加量为50 m L),n[Fe~(2+)]∶m[H_2O_2]=1∶10,p H=3,反应温度为30℃,反应时间30 min,废水COD去除率可达到70%~79%。该研究为高浓度难降解废水处理提供了数据支持。  相似文献   

13.
研究了内电解法动态处理3种染料废水的工艺条件,如反应时间、pH值、铁屑投加量、铁屑粉煤灰比例等.在最佳工艺条件下,动态内电解法处理混合染料废水,色度去除达95%,CODCr去除率也达70%.并讨论了铁屑-粉煤灰内电解法处理染料废水的机理.  相似文献   

14.
曝气条件下采用微电解-Fenton工艺处理模拟染料废水。在最佳微电解工艺即铁炭比为45 g∶45 g,pH=3,反应时间为60 min;在Fenton工艺pH值为3,H2O2投加量0.7 mL,反应时间为120 min时,染料废水总脱色率达92%,其色度去除率高于单独微电解工艺时的63%和单独Fenton工艺时的67%。模拟染料废水经微电解及Fenton工艺处理后,废水pH值、Fe2+浓度和色度均发生变化。  相似文献   

15.
In this study, chemical oxygen demand (COD) was characterized as total organic constituents and the isolated humic substances (HS) were characterized as an individual organic contaminant in landfill leachate. It was found that the HS content of landfill leachate was 83.3%. The results of laboratory tests to determine the roles of HS in reducing the organic content of landfill leachate during Fenton process are presented. Furthermore, the performances of oxidation and coagulation of Fenton reaction on the removal of HS and COD from leachate were investigated. The change curves of HS removal were similar to those of COD. The HS removal was 30% higher than COD removal, which indicated that HS were mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linear dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H2O2]/[Fe2+] < 3.0), but not at extremely high ratio ([H2O2]/[Fe2+] > 6.0). The coagulation removal of HS was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe2+ dosage, but this effect was not obvious at high Fe2+ dosage.  相似文献   

16.
高级催化氧化法降解4BS模拟染料废水   总被引:1,自引:1,他引:0  
用煤灰渣加入活性组分复合成催化剂、H2O2作为氧化剂的高级催化氧化法降解4BS模拟染料废水.结果表明,高级催化氧化法可以有效降解4BS.当pH=4、H2O2投加量为0.46 mL/L、反应100 min时,脱色率达98%,同时COD去除率可达83%以上.催化剂运转时间累计达到500 h,脱色率和COD去除率分别保持为98%和83%,未发现有活性下降现象.本研究为染料废水的处理提供了一种经济有效的方法.  相似文献   

17.
FeSO4/H2O2/UV体系处理化纤厂棉浆粕黑液的研究   总被引:1,自引:0,他引:1  
Fenton法是处理难降解有毒有机污染物的一种有效的方法.以棉浆粕黑液为研究对象,讨论了H2O2和FeSO4投加量、pH值、搅拌时间等因素对废水CODCr去除率的影响,将紫外光照引入Fenton试剂能提高废水中有毒有机污染物的降解速度,提高氧化能力 .实验确定了最佳工艺条件:pH=7,FeSO4投加量4 g/L,H2O2投加量为1.13%(V/V),搅拌时间15 min,此时CODCr去除率达到66.96%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号