首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
If a forager bee returns to her hive laden with high-quality nectar but then experiences difficulty finding a receiver bee to unload her, she will begin to produce a conspicuous communication signal called the tremble dance. The context in which this signal is produced suggests that it serves to stimulate more bees to function as nectar receivers, but so far there is no direct evidence of this effect. We now report an experiment which shows that more bees do begin to function as nectar receivers when foragers produce tremble dances. When we stimulated the production of tremble dances in a colony and counted the number of bees engaged in nectar reception before and after the period of intense tremble dancing, we found a dramatic increase. In two trials, the number of nectar receivers rose from 17% of the colony’s population before tremble dancing to 30–50% of the population after the dancing. We also investigated which bees become the additional nectar receivers, by looking at the age composition of the receiver bees before and after the period of intense tremble dancing. We found that none of the bees recruited to the task of nectar reception were old bees, most were middle-aged bees, and some were even young bees. It remains unclear whether these auxiliary nectar receivers were previously inactive (as a reserve supply of labor) or were previously active on other tasks. Overall, this study demonstrates that a honey bee colony is able to rapidly and strongly alter its allocation of labor to adapt to environmental changes, and it further documents one of the communication mechanisms underlying this ability. Received: 31 May 1996/Accepted after revision: 9 August 1996  相似文献   

2.
The concept of a suite of foraging behaviors was introduced as a set of traits showing associative directional change as a characterization of adaptive evolution. I report how naturally selected differential sucrose response thresholds directionally affected a suite of honey bee foraging behaviors. Africanized and European honey bees were tested for their proboscis extension response thresholds to ascending sucrose concentrations, reared in common European colonies and, captured returning from their earliest observed foraging flight. Race constrained sucrose response threshold such that Africanized bees had significantly lower sucrose response thresholds. A Cox proportional hazards regression model of honey bee race and sucrose response threshold indicated that Africanized bees were 29% (P<0.01) more at risk to forage over the 30-day experimental period. Sucrose response threshold organized age of first foraging such that each unit decrease in sucrose response threshold increased risk to forage by 14.3% (P<0.0001). Africanized bees were more likely to return as pollen and water foragers than European foragers. Africanized foragers returned with nectar that was significantly less concentrated than European foragers. A comparative analysis of artificial and naturally selected populations with differential sucrose response thresholds and the common suite of directional change in foraging behaviors is discussed. A suite of foraging behaviors changed with a change in sucrose response threshold that appeared as a product of functional ecological adaptation.Communicated by R.F.A. Moritz  相似文献   

3.
Nectar collection in the honey-bee is partitioned. Foragers collect nectar and take it to the nest, where they transfer it to receiver bees who then store it in cells. Because nectar is a fluctuating and unpredictable resource, changes in worker allocation are required to balance the work capacities of foragers and receivers so that the resource is exploited efficiently. Honey bee colonies use a complex system of signals and other feedback mechanisms to coordinate the relative and total work capacities of the two groups of workers involved. We present a functional evaluation of each of the component mechanisms used by honey bees – waggle dance, tremble dance, stop signal, shaking signal and abandonment – and analyse how their interplay leads to group-level regulation. We contrast the actual regulatory system of the honey bee with theory. The tremble dance conforms to predicted best use of information, where the group in excess applies negative feedback to itself and positive feedback to the group in shortage, but this is not true of the waggle dance. Reasons for this and other discrepancies are discussed. We also suggest reasons why honey bees use a combination of recruitment plus abandonment and not switching between subtasks, which is another mechanism for balancing the work capacities of foragers and receivers. We propose that the waggle and tremble dances are the primary regulation mechanisms, and that the stop and shaking signals are secondary mechanisms, which fine-tune the system. Fine-tuning is needed because of the inherent unreliability of the cues, queueing delays, which foragers use to make recruitment decisions. Received: 15 December 1998 / Received in revised form: 6 March 1999 / Accepted: 12 March 1999  相似文献   

4.
This study explores the meaning and functional design of a modulatory communication signal, the honey bee shaking signal, by addressing five questions: (I) who shakes, (II) when do they shake, (III) where do they shake, (IV) how do receivers respond to shaking, and (V) what conditions trigger shaking. Several results confirm the work of Schneider (1987) and Schneider et al. (1986a): (I) most shakers were foragers (at least 83%); (II) shaking exhibited a consistent temporal pattern with bees producing the most signals in the morning (0810–1150 hours) just prior to a peak in waggle dancing activity; and (IV) bees moved faster (by 75%) after receiving a shaking signal. However, this study differs from previous work by providing a long-term, temporal, spatial, and vector analysis of individual shaker behavior. (III) Bees producing shaking signals walked and delivered signals in all areas of the hive, but produced the most shaking signals directly above the waggle dance floor. (IV) Bees responded to the signal by changing their direction of movement. Prior to receiving a signal, bees selected from the waggle dance floor moved, on average, towards the hive exit. After receiving a signal, some bees continued moving towards the exit but others moved directly away from the exit. During equivalent observation periods, non-shaken bees exhibited a strong tendency to move towards the hive exit. (V) Renewed foraging activity after food dearth triggered shaking signals, and, the level of shaking is positively correlated with the duration of food dearth. However, shaking signal levels also increased in the morning before foraging had begun and in the late afternoon after foraging had ceased. This spontaneous afternoon peak has not previously been reported. The shaking signal consequently appears to convey the general message “reallocate labor to different activities” with receiver context specifying a more precise meaning. In the context of foraging, the shaking signal appears to activate (and perhaps deactivate) colony foraging preparations. The generally weak response elicited by modulatory signals such as the shaking signal may result from a high receiver response threshold which allows the receiver to integrate multiple sources of information and which thereby increases the probability that receiver actions will be appropriate to colony needs. Received: 21 March 1997 / Accepted after revision: 30 August 1997  相似文献   

5.
The non-random movement patterns of foraging bees are believed to increase their search efficiency. These patterns may be innate, or they may be learned through the bees’ early foraging experience. To identify the innate components of foraging rules, we characterized the flight of naive bumblebees, foraging on a non-patchy “field” of randomly scattered artificial flowers with three color displays. The flowers were randomly mixed and all three flower types offered equal nectar volumes. Visited flowers were refilled with probability 0.5. Flight distances, flight durations and nectar probing durations were determined and related to the bees’ recent experiences. The naive bees exhibited area-restricted search behavior, i.e., flew shorter distances following visits to rewarding flowers than after visits to empty flowers. Additionally, flight distances during flower-type transitions were longer than flight distances between flowers of the same type. The two movement rules operated together: flight distances were longest for flights between flower types following non-rewarding visits, shortest for within-type flights following rewarding visits. An increase in flight displacement during flower-type shifts was also observed in a second experiment, in which all three types were always rewarding. In this experiment, flower-type shifts were also accompanied by an increase in flight duration. Possible relationships between flight distances, flight durations and flower-type choice are discussed. Received: 20 November 1995/Accepted after revision: 10 May 1996  相似文献   

6.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号