首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudevernia furfuracea (L.) Zopf biosorption efficiency for zinc(II) was determined. The biosorption efficiency of Zn(II) onto P. furfuracea was significantly affected by the parameters of pH, biomass concentration, stirring speed, contact time, and temperature. The maximum biosorption efficiency of P. furfuracea was 92% at 10 mg/L Zn(II), for 5 g/L lichen biomass dosage. The biosorption of Zn(II) ions onto biomass was better described by the Langmuir model and the pseudo-second-order kinetic. The obtained thermodynamic parameters from biosorption of Zn(II) ions onto biomass were feasible, exothermic, and spontaneous. The different desorbents were used to perform the desorption studies for Zn(II)-loaded biomass. Fourier transform infrared (FTIR) spectroscopy was used to determine the participating functional groups of P. furfuracea biomass in Zn (II) biosorption. The broad and strong bands at 3292–3304 cm?1 were due to bound hydroxyl (–OH) or amine (–NH) groups. The effective desorptions were obtained up to 96% with HNO3. P. furfuracea is an encouraging biosorbent for Zn(II) ions, with high metal biosorption and desorption capacities, availability, and low cost. It was believed that by using this new method in which biomass is used as a sorbent, the toxic pollutants could be selectively removed from aqueous solutions to desired low levels. The remarkable properties of lichens in the transformation and detoxification of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.
Implications:The remarkable properties of lichens in the biosorption capacity of organic and inorganic pollutants are well known, and many processes have received attention in the general area of environmental biotechnology and microbiology.  相似文献   

2.
In this study, the adsorption properties of a pre-treated biomass from marine alga Padina sp., a biomass collected from Surin Island, Thailand, for removal of cadmium(II) ions from aqueous solutions was investigated. Batch and column experiments were conducted to determine the adsorption properties of the modified biomass. At a pH of 5, the maximum removal capacity of the biomass is 0.53 mmol/g. The kinetics of cadmium(II) adsorption were fast with 90% of adsorption taking place within 35 min. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an efficient biosorbent for the treatment of cadmium(II)-bearing wastewater streams.  相似文献   

3.
The removal and mechanism of Cu2+ and Cd2+ from aqueous single-metal solutions were investigated by using a novel biosorbent from waste-activated sludge. A series of adsorption experiments was designed to disclose the effects of the key factors on the adsorption capacity of the biosorbent for the metal ions. The mass ratio of the biosorbent to metal ion was optimized as 2 to balance the adsorption capacity and the removal efficiency. A right shaking speed (150 r/min) not only ensured enough contact frequency between the sorbent and the adsorbate but also reduced the mass transfer resistance. The natural pH value (about 5.5) of the metal solutions benefited a high adsorption capacity of the biosorbent and avoided the consumption of acid or base for pH adjustment. The adsorption reactions belonged to the endothermic process between 15 and 45 °C. As the scanning electron microscopy (SEM) images showed, the meshy structure with long chains and many branches was ideal for the biosorbent to quickly capture the metal ions. The energy-dispersive X-ray (EDX) spectra confirmed that the adsorbed metal ions lay in the precipitates of the adsorption reactions. According to the FTIR analyses, the functional groups responsible for Cu2+ adsorption majorly consisted of O–H, N–H, COOH, CONH2, and the groups containing sulfur and phosphorus, while those for Cd2+ adsorption contained O–H, N–H, COOH, and CONH2. The differences in the responsible functional groups explained the phenomenon that the adsorption capacity of the biosorbent for Cu2+ was higher than that for Cd2+.  相似文献   

4.
Kaewsarn P 《Chemosphere》2002,47(10):1081-1085
Biosorption of heavy metals can be an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high uptake capacities for a number of heavy metal ions. In this paper, the adsorption properties of a pre-treated biomass of marine algae Padina sp. for copper(II) were investigated. Equilibrium isotherms and kinetics were obtained from batch adsorption experiments. The biosorption capacities were solution pH dependent and the maximum capacity obtained was 0.80 mmol/g at a solution pH of about 5. The biosorption kinetics was found to be fast, with 90% of adsorption within 15 min and equilibrium reached at 30 min. The effects of light metal ions on copper(II) uptake were studied and the presence of light metal ions did not affect copper(II) uptake significantly. Fixed-bed breakthrough curves for copper(II) removal were also obtained. This study demonstrated that the pre-treated biomass of Padina sp. could be used as an effective biosorbent for the treatment of copper(II) containing wastewater streams.  相似文献   

5.
Environmental Science and Pollution Research - A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate...  相似文献   

6.
Naturally occurring kind of weathered and oxidised young brown coal called oxihumolite was used for an adsorptive removal of basic (Methylene Blue, Malachite Green) as well as acid (Egacid Orange, Midlon Black) dyes from waters. It was shown that both kinds of dyes can be sorbed onto oxihumolite. The maximum sorption capacities determined from the parameters of Langmuir isotherms ranged from 0.070 mmol g-1 (for Midlon Black) to 0.278 mmol g-1 (for Malachite Green) and did not differ significantly for basic and acid dyes. The dye sorption (except of Midlon Black) increased in the presence of inorganic salt. Non-ionic surfactants, and surfactants bearing the same charge as the dye exhibited only a minor effect on the dye sorption, whereas oppositely charged surfactants enhanced the dye sorption to a certain extent. The pH value of the aqueous phase exhibited rather pronounced effect on the sorption of acid dyes causing a suppression of the sorption with increasing pH. The sorption of basic dyes, on the other hand, remained almost unchanged in the examined pH range. Oxihumolite is recommended for the treatment of acid wastewaters because of its limited stability in alkaline aqueous solutions.  相似文献   

7.
8.

Purpose

This study has the objective to evaluate the lead(II) removal capacity of hydroxyapatite powder synthesized by microwave as an alternative method to decrease production time and cost.

Methods

Hydroxyapatite (HA) was synthesized by a microwave-assisted precipitation method using calcium nitrate and ammonium hydrogen phosphate as calcium and phosphorus sources, respectively. X-ray diffraction and Fourier transform infrared results clearly revealed that the resulting powder was HA with high purity and crystallinity. The obtained powder was used for the removal of lead(II) from aqueous solutions. The effects of pH, amount of adsorbent, initial lead(II) concentration, and contact time were studied in batch experiments.

Results

In the adsorption experiments, maximum lead(II) retention was obtained at pH 6. Adsorption equilibrium was established after 40 min. It was found that the adsorption of lead(II) on HA was correlated well (R 2?=?0.958) with the Freundlich equation for the concentration range studied. Both ion exchange and adsorption process were thought to exist in the removal process.

Conclusions

This study indicates that easily and rapidly synthesized HA by microwave-assisted precipitation method could be used as an efficient adsorbent for removal of lead(II) from aqueous solutions.  相似文献   

9.
Manganese-coated activated carbon (MCAC) and activated carbon were used in batch experiments for the removal of cadmium(II) and copper(II). Results showed that uptake of Cd(II) and Cu(II) was unaffected by increases in pH (3.0 to 8.5) or concentration (1 to 20 mg/L). Increased ionic strength (from 0.001 to 1 M NaNO3), however, significantly affected the uptake of Cd(II); adsorption of Cu(II) was not affected. Freundlich adsorption isotherm results indicated that MCAC possessed higher sorption capacity than activated carbon. Second-order rate constants were found to be 0.0386 for activated carbon and 0.0633 g/mg x min for MCAC for Cd(II) and 0.0774 for AC and 0.1223 g/mg x min for MCAC for Cu(II). Column experiments showed that maximum sorption capacity of MCAC was 39.48 mg/g for Cu(II) and 12.21 mg/g for Cd(II).  相似文献   

10.
Environmental Science and Pollution Research - Agro-industrial waste biosorbents of arabica–coffee (WCA) and theobroma–cocoa (WCT) have been characterized and tested to remove Pb(II)...  相似文献   

11.
This study was undertaken to evaluate the biosorption potential of a natural, low-cost biosorbent, Rambai leaves (Baccaurea motleyana), to remove trace amounts of Hg(II) from aqueous solutions. It was found that the amount of Hg(II) biosorption by Rambai leaves increased with initial metal ion concentration, contact time, and solution pH but decreased as the amount of biosorbent increased. The maximum biosorption capacity was 121.95 mg/g for an initial concentration range of 5 to 120 ppb. Overall, kinetic studies showed that the Hg(II) biosorption process followed pseudo-second-order kinetics based on pseudo-first-order and intraparticle diffusion models. Isotherm data revealed that the biosorption process followed both Freundlich and Langmuir isotherms. The value of separation factor, R(L), from the Langmuir equation and rate of biosorption, n, from the Freundlich model also indicated favorable adsorption.  相似文献   

12.
The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.  相似文献   

13.
In the present study biosorption technique, the passive accumulation of metals by biomass, is used for the removal of nickel from aqueous medium. The brown algae, Sargassum sp., in its natural and acid treated forms are used as a low cost sorbent. The adsorption characteristics of nickel on Sargassum sp. are evaluated as a function of time, pH, adsorbent dosage and initial concentration of nickel. The equilibrium adsorption data are fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters are evaluated. Both the models represent the experimental data satisfactorily. The adsorption follows Lagergren first order kinetic model. The monolayer adsorption capacities of natural and acid treated forms of algae as obtained from Langmuir adsorption model are found to be 181 and 250mg g(-1) respectively.  相似文献   

14.
Miretzky P  Bisinoti MC  Jardim WF 《Chemosphere》2005,60(11):1583-1589
The sorption of Hg (II) onto four different types of Amazon soils from the A-horizon was investigated by means of column experiments under saturation conditions and controlled metal load. Higher organic matter contents in the soil resulted in higher Hg (II) adsorptions, reaching values as high as 3.8 mg Hg g−1 soil. The amount of mercury adsorbed on a soil column (Q) shows a very poor correlation with soil clay content (r2 = 0.2527), indicating that Hg sorption in these topsoil samples is chiefly governed by the organic matter content. Desorption experiments using Negro River (Amazon) waters were conducted using soil saturated with Hg (II) in order to better understand the metal leaching mechanism. The amount of Hg (II) released from soils was around 30% of the total sorbed mercury upon saturation, suggesting that mercury sorption in the soils present in the catchment area of the Negro River basin is not a reversible process.  相似文献   

15.
Rate constants were measured for several radical reactions important in the autoxidation of S(IV) in atmospheric droplets. For the reactions of the hydroxyl radical with sulfite and bisulfite, the rate constants were found to be 5.2 × 1010 and 4.5 × 109 M−1 s−1, respectively. For the reaction of the dichloride radical anion with bisulfite, a rate constant of 3.4 × 108M−1s−1 was obtained. The peroxysulfate radical was found to react with sulfite with a rate constant of 1.3 × 107M−1s−1, but only an upper limit of 3×105 could be derived for its reaction with bisulfite. In some cases, the rate constants are significantly different from those used previously in atmospheric models. The use of these results in a simple model suggests that secondary radical-radical reactions may be of considerable importance in the mechanism of sulfite autoxidation in the atmosphere.  相似文献   

16.

Purpose

This research is on the evaluation of biosorption capability of the core of Artocarpus odoratissimus (Tarap), grown in Brunei Darussalam, towards Cd(II) and Cu(II) ions present in synthetic solutions, and to characterize the surface of Tarap particles.

Methods

Thermogravimetric analysis and surface titrations were conducted to characterize the surface of dried Tarap core particles. Atomic absorption spectroscopic measurements were conducted to determine the extent of removal of Cd(II) and Cu(II) under different experimental conditions.

Results

Mass reductions associated with many exothermic reaction peaks were observed beyond 200°C up to 650°C indicating the combustion of organic matter in Tarap. Dried particles of core of Tarap bear a negative surface charge promoting strong interaction towards positively charged ions, such as Cu(II) and Cd(II). Biosorption of the two metal ions on Tarap, which is relatively high beyond pH?=?4, occurs within a short period of exposure time. The extent of biosorption is enhanced by acid treatment of the biosorbent, and further it does not significantly depend on the presence of nonreacting ions up to an ionic strength of 2.0?M.

Conclusion

Strong attraction between each metal ion and the biosorbent is attributed to the negative surface charge on the biosorbent within a broad pH range. Acid treatment of the biosorbent improves sorption characteristics, suggesting that ion exchange plays an important role in the metal ion??biosorbent interaction process.  相似文献   

17.
Environmental Science and Pollution Research - The scientific impact of this work is the protection of the environment from hazardous pollutants. Gamma irradiation was employed for the preparation...  相似文献   

18.

Purpose

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.

Methods

Biochar was produced from dairy manure (DM) at two temperatures: 200°C and 350°C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0–5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.

Results

The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g?1, respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g?1, respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO 4 3? or CO 3 2? originating in biochar, with less to the surface complexation through –OH groups or delocalized π electrons. At the initial metal concentration of 5 mM, 80–100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic –OH complexation. Among the precipitation, 20–30 % of the precipitation occurred as metal phosphate and 70–80 % as metal carbonate. For DM350, 75–100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic –OH site or delocalized π electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.

Conclusions

Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.  相似文献   

19.
The biosorption of lead(II) ions in both simulated and real wastewater by spent mushroom Tricholoma lobayense, was studied in this work. The results show a biomass with a high potential for removing lead ions from wastewater. The optimum pH for the adsorption is 4, and the adsorption process is fast. The best sorbent mass of the biomaterial is 5 g/L with an initial lead(II) concentration of 1 mmol/L. The process follows the Langmuir isotherm model, and the biosorption capacity of lead ions reaches to 210 mg/g, which is higher than many biosorbents previously studied. The mechanism of biosorption may be mainly attributed to ion exchange. The FT-IR study identifies the functional groups responsible for this process. A scanning electron microscope showed a significant change of the sorbent surface after the biosorption process. The energy dispersive elemental analysis also confirmed the adsorption of lead(II) ions.  相似文献   

20.
Environmental Science and Pollution Research - Contamination of drinking water with arsenic causes severe health problems in various world regions. Arsenic exists predominantly as As(III) and As(V)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号