首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Indoor particulate matter samples were collected in 17 homes in an urban area in Alexandria during the summer season. During air measurement in all selected homes, parallel outdoor air samples were taken in the balconies of the domestic residences. It was found that the mean indoor PM2.5 and PM10 (particulate matter with an aerodynamic diameter ≤2.5 and ≤10 μm, respectively) concentrations were 53.5 ± 15.2 and 77.2 ± 15.1 µg/m3, respectively. The corresponding mean outdoor levels were 66.2 ± 16.5 and 123.8 ± 32.1 µg/m3, respectively. PM2.5 concentrations accounted, on average, for 68.8 ± 12.8% of the total PM10 concentrations indoors, whereas PM2.5 contributed to 53.7 ± 4.9% of the total outdoor PM10 concentrations. The median indoor/outdoor mass concentration (I/O) ratios were 0.81 (range: 0.43–1.45) and 0.65 (range: 0.4–1.07) for PM2.5 and PM10, respectively. Only four homes were found with I/O ratios above 1, indicating significant contribution from indoor sources. Poor correlation was seen between the indoor PM10 and PM2.5 levels and the corresponding outdoor concentrations. PM10 levels were significantly correlated with PM2.5 loadings indoors and outdoors and this might be related to PM10 and PM2.5 originating from similar particulate matter emission sources. Smoking, cooking using gas stoves, and cleaning were the major indoor sources contributed to elevated indoor levels of PM10 and PM2.5.

Implications: The current study presents results of the first PM2.5 and PM10 study in homes located in the city of Alexandria, Egypt. Scarce data are available on indoor air quality in Egypt. Poor correlation was seen between the indoor and outdoor particulate matter concentrations. Indoor sources such as smoking, cooking, and cleaning were found to be the major contributors to elevated indoor levels of PM10 and PM2.5.  相似文献   

2.
ABSTRACT

The present study investigated indoor and outdoor concentrations of two particulate matter size fractions (PM10 and PM2.5) and CO2 in 20 urban homes ventilated naturally and located in one congested residential and commercial area in the city of Alexandria, Egypt. The results indicate that the daily mean PM2.5 concentrations measured in the ambient air, living rooms, and kitchens of all sampling sites exceeded the WHO guideline by 100%, 65%, and 95%, respectively. The daily mean outdoor and indoor PM10 levels in all sampling sites were found to exceed the WHO guideline by 100% and 80%, respectively. The indoor PM10 and PM2.5 concentrations were significantly correlated with their corresponding outdoor levels, as natural ventilation through opening doors and windows allowed direct transfer of outdoor airborne particles into the indoor air. Most of the kitchens investigated had higher indoor concentrations of PM2.5 and CO2 than in living rooms. The elevated levels of PM2.5 and CO2 in domestic kitchens were probably related to inadequate ventilation. The current study attempted to understand the sources and the various indoor and outdoor factors that affect indoor PM10, PM2.5 and CO2 concentrations. Several domestic activities, such as smoking, cooking, and cleaning, were found to constitute important sources of indoor air pollution. The indoor pollution caused by PM2.5 was also found to be more serious in the domestic kitchens than in the living rooms and the results suggest that exposure to PM2.5 is high and highlights the need for more effective control measures.

Implications: Indoor air pollution is a complex problem that involves many determinant factors. Understanding the relationships and the influence of various indoor and outdoor factors on indoor air quality is very important to prioritize control measures and mitigation action plans. There is currently a lack of research studies in Egypt to investigate determinant factors controlling indoor air quality for urban homes. The present study characterizes the indoor and outdoor concentrations of PM10, PM2.5, and CO2 in residential buildings in Alexandria city. The study also determines the indoor and outdoor factors which influence the indoor PM and CO2 concentrations as well as it evaluates the potential indoor sources in the selected homes. This research will help in the development of future indoor air quality standards for Egypt.  相似文献   

3.
An indoor air quality assessment was conducted on 100 homes of recent Mexican immigrants in Commerce City, Colorado, an urban industrial community north of Denver. Head of households were administered a family health survey, filled out an activity diary, and participated in a home inspection. Carbon monoxide (CO) and carbon dioxide (CO2) were measured for 24 h inside the main living area and outside of the homes. Harvard Impactors were used to collect 24-h samples of PM2.5 at the same locations for gravimetric analysis. Dust samples were collected by vacuuming carpeting and flooring at four locations within the home and analyzed by ELISA for seven allergens. Mean indoor and outdoor PM2.5 levels were 27.2 and 8.5 μg m−3, respectively. Indoor PM2.5 and CO2 were elevated in homes for which the number of hours with door/window open was zero compared to homes in which the number of hours was high (>15 h). Indoor PM2.5 levels did not correlate with outdoor levels and tended to increase with number of inhabitants, and results indicate that the source of indoor particles were occupants and their activities, excluding smoking and cooking. Mean indoor CO2 and CO levels were 1170 and 2.4 ppm, respectively. Carbon monoxide was higher than the 24-h National Ambient Air Quality Standard in 3 of the homes. The predominant allergens were cat (Fel d 1) and mouse (Mus m 1) allergens, found in 20 and 34 homes, respectively.  相似文献   

4.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

5.
Fine particulate matter (PM2.5) air pollution has been linked to adverse health impacts, and combustion sources including residential wood-burning may play an important role in some regions. Recent evidence suggests that indoor air quality may improve in homes where older, non-certified wood stoves are exchanged for lower emissions EPA-certified alternatives. As part of a wood stove exchange program in northern British Columbia, Canada, we sampled outdoor and indoor air at 15 homes during 6-day sampling sessions both before and after non-certified wood stoves were exchanged. During each sampling session two consecutive 3-day PM2.5 samples were collected onto Teflon filters, which were weighed and analyzed for the wood smoke tracer levoglucosan. Residential PM2.5 infiltration efficiencies (Finf) were estimated from continuous light scattering measurements made with nephelometers, and estimates of Finf were used to calculate the outdoor- and indoor-generated contributions to indoor air. There was not a consistent relationship between stove technology and outdoor or indoor concentrations of PM2.5 or levoglucosan. Mean Finf estimates were low and similar during pre- and post-exchange periods (0.32 ± 0.17 and 0.33 ± 0.17, respectively). Indoor sources contributed the majority (~65%) of the indoor PM2.5 concentrations, independent of stove technology, although low indoor-outdoor levoglucosan ratios (median ≤ 0.19) and low indoor PM2.5-levoglucosan correlations (r ≤ 0.19) suggested that wood smoke was not a major indoor PM2.5 source in most of these homes. In summary, despite the potential for extensive wood stove exchange programs to reduce outdoor PM2.5 concentrations in wood smoke-impacted communities, we did not find a consistent relationship between stove technology upgrades and indoor air quality improvements in homes where stoves were exchanged.  相似文献   

6.
Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.  相似文献   

7.
Thoracic (PM10), fine thoracic (PM2.5) and sub-micrometer (PM1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11–29, 8.1–24, and 6.6–18 μg m?3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m?3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO3? levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl? were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m?3 and were strongly correlated with outdoor traffic conditions.  相似文献   

8.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

9.
A survey of key indoor air quality (IAQ) parameters and resident health was carried out in 72 apartments within a single low-income senior housing building in Phoenix, Arizona. Air sampling was carried out simultaneously with a questionnaire on personal habits and general health of residents. Mean PM10 concentrations are 66±16, 58±13, and 24±3 μg/m3 and mean PM2.5 concentrations are 62±16, 53±13, and 20±2 μg/m3 for the living room, kitchen, and outdoor balcony, respectively. Median PM10 concentrations are 17, 18 and 17 μg/m3 and median PM2.5 concentrations are 13, 14, and 13 μg/m3, respectively. The initial results indicate that increased indoor particle concentrations coincide with residents who report smoking cigarettes. Indoor formaldehyde concentrations revealed median levels of 36.9, 38.8, and 4.3 ppb in the living room, kitchen, and balcony, respectively. Results show that 36% of living room samples and 44% of kitchen samples exceeded the Health Canada REL for chronic exposure to formaldehyde (40 ppb). Associations between occupants’ behavior, self-reported health conditions, and IAQ are evaluated.
Implications:This study provides a characterization of indoor air quality (IAQ) of subsidized apartments for seniors in Phoenix, Arizona. It is important for policy makers to understand the environments in which low-income seniors live, as they are vulnerable to the health impacts from poor IAQ. Formaldehyde concentrations were found to exceed the Health Canada 8-hr reference exposure level (REL) for up to 44% of indoor samples. Particulate matter exposure was governed by resident behavior (i.e., smoking). Associations between occupants’ behavior, IAQ, and self-reported health conditions are evaluated. This work can provide a foundation for subsequent remediation of IAQ conditions.  相似文献   

10.
The functional group (FG) composition of urban residential outdoor, indoor, and personal fine particle (PM2.5) samples is presented and used to provide insights relevant to organic PM2.5 exposure. PM2.5 samples (48 h) were collected during the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study at 219 non-smoking homes (once or twice) in Los Angeles County, CA, Elizabeth, NJ, and Houston, TX. Fourier transform infrared (FTIR) spectra of PM2.5 samples were collected, and FG absorbances were quantified by partial least squares (PLS) regression, a multivariate calibration method.There is growing evidence in the literature that a large majority of indoor-generated PM2.5 is organic. The current research suggests that indoor-generated PM2.5 is enriched in aliphatic carbon–hydrogen (CH) FGs relative to ambient outdoor PM2.5. Indoor-generated CH exceeded outdoor-generated CH in 144 of the 167 homes for which indoor or outdoor CH was measurable; estimated indoor emission rates are provided. The strong presence of aliphatic CH FGs in indoor PM2.5 makes particulate organic matter substantially less polar indoors and in personal exposures than outdoors. This is a substantial new finding. Based on the quantified FGs, the average organic molecular weight (OM) per carbon weight (OC), a measure of the degree of oxygenation of organic PM, is in the range of 1.7–2.6 for outdoor samples and 1.3–1.7 for indoor and personal samples. Polarity or degree of oxygenation effects particle deposition in exposure environments and in the respiratory system.  相似文献   

11.
Abstract

The impact of outdoor and indoor pollution sources on indoor air quality in Santiago, Chile was investigated. Toward this end, 16 homes were sampled in four sessions. Each session included an outdoor site and four homes using different unvented space heaters (electric or central heating, compressed natural gas, liquefied petroleum gas, and kerosene). Average outdoor fine particulate matter (PM2.5) concentrations were very high (55.9 μg·m-3), and a large fraction of these particles penetrated indoors. PM2.5 and several PM2.5 components (including sulfate, elemental carbon, organic carbon, metals, and polycyclic aromatic hydrocarbons) were elevated in homes using kerosene heaters. Nitrogen dioxide (NO2) and ultrafine particles (UFPs) were higher in homes with combustion heaters as compared with those with electric heaters or central heating. A regression model was used to assess the effect of heater use on continuous indoor PM2.5 concentrations when windows were closed. The model found an impact only for kerosene heaters (45.8 μg m-3).  相似文献   

12.
Particulate matter is an important air pollutant, especially in closed environments like underground subway stations. In this study, a total of 13 elements were determined from PM10 and PM2.5 samples collected at two subway stations (Imam Khomeini and Sadeghiye) in Tehran’s subway system. Sampling was conducted in April to August 2011 to measure PM concentrations in platform and adjacent outdoor air of the stations. In the Imam Khomeini station, the average concentrations of PM10 and PM2.5 were 94.4?±?26.3 and 52.3?±?16.5 μg m?3 in the platform and 81.8?±?22.2 and 35?±?17.6 μg m?3 in the outdoor air, respectively. In the Sadeghiye station, mean concentrations of PM10 and PM2.5 were 87.6?±?23 and 41.3?±?20.4 μg m?3 in the platform and 73.9?±?17.3 and 30?±?15 μg m?3, in the outdoor air, respectively. The relative contribution of elemental components in each particle fraction were accounted for 43 % (PM10) and 47.7 % (PM2.5) in platform of Imam Khomeini station and 15.9 % (PM10) and 18.5 % (PM2.5) in the outdoor air of this station. Also, at the Sadeghiye station, each fraction accounted for 31.6 % (PM10) and 39.8 % (PM2.5) in platform and was 11.7 % (PM10) and 14.3 % (PM2.5) in the outdoor. At the Imam Khomeini station, Fe was the predominant element to represent 32.4 and 36 % of the total mass of PM10 and PM2.5 in the platform and 11.5 and 13.3 % in the outdoor, respectively. At the Sadeghiye station, this element represented 22.7 and 29.8 % of total mass of PM10 and PM2.5 in the platform and 8.7 and 10.5 % in the outdoor air, respectively. Other major crustal elements were 5.8 % (PM10) and 5.3 % (PM2.5) in the Imam Khomeini station platform and 2.3 and 2.4 % in the outdoor air, respectively. The proportion of other minor elements was significantly lower, actually less than 7 % in total samples, and V was the minor concentration in total mass of PM10 and PM2.5 in both platform stations.  相似文献   

13.
The PM10, PM2.5, and PM1 (particulate matter with aerodynamic diameters <10, <2.5, and <1 μm, respectively) concentrations were monitored over a 90-day period in a naturally ventilated school building located at roadside in Chennai City. The 24-hr average PM10, PM2.5, and PM1 concentrations at indoor and outdoor environments were found to be 136 ± 60, 36 ± 15, and 20 ± 12 and 76 ± 42, 33 ± 16, and 23 ± 14 μg/m3, respectively. The size distribution of PM in the classroom indicated that coarse mode was dominant during working hours (08:00 a.m. to 04:00 p.m.), whereas fine mode was dominant during nonworking hours (04:00 p.m. to 08:00 a.m.). The increase in coarser particles coincided with occupant activities in the classrooms and finer particles were correlated with outdoor traffic. Analysis of indoor PM10, PM2.5, and PM1 concentrations monitored at another school, which is located at urban reserved forest area (background site) indicated 3–4 times lower PM10 concentration than the school located at roadside. Also, the indoor PM1 and PM2.5 concentrations were 1.3–1.5 times lower at background site. Further, a mass balance indoor air quality (IAQ) model was modified to predict the indoor PM concentration in the classroom. Results indicated good agreement between the predicted and measured indoor PM2.5 (R2 = 0.72–0.81) and PM1 (R2 = 0.81–0.87) concentrations. But, the measured and predicted PM10 concentrations showed poor correlation (R2 = 0.17–0.23), which may be because the IAQ model could not take into account the sudden increase in PM10 concentration (resuspension of large size particles) due to human activities.
Implications:The present study discusses characteristics of the indoor coarse and fine PM concentrations of a naturally ventilated school building located close to an urban roadway and at a background site in Chennai City, India. The study results will be useful to engineers and policymakers to prepare strategies for improving the IAQ inside classrooms. Further, this study may help in the development of IAQ standards and guidelines in India.  相似文献   

14.
Metropolitan residents are concerned about their exposure to airborne pollutants. But establishing these exposures is challenging. A compact personal exposure kit (PEK) was developed to evaluate personal integrated exposure (PIE) from time-resolved data to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) in five microenvironments, including office, home, commuting, other indoor activities (other than home and office), and outdoor activities experienced both on weekdays and weekends. The study was conducted in Hong Kong. The PEK measured PM2.5, reported location and several other factors, stored collected data, as well as reported the data back to the investigators using global system for mobile communication (GSM) telemetry. Generally, PM2.5 concentrations in office microenvironment were found to be the smallest (13.0 μg/m3), whereas the largest PM2.5 concentration microenvironments were experienced during outdoor activities (54.4 μg/m3). Participants spent more than 85% of their time indoors, including in offices, homes, and other public indoor venues. On average, 42% and 81% of the time were spent in homes, which contributed 52% and 79% of PIE (during weekdays and weekends, respectively), suggesting that improvement of air quality in homes may reduce overall exposures and indicating the need for actions to mitigate possible public health burdens in Hong Kong. This study also found that various indoor/outdoor microenvironments experienced by urban office workers cannot be accurately represented by general urban air quality data reported from the regulatory monitoring. Such personalized air quality information, especially while in transit or in offices and homes, may provide improved information on population exposures to air pollution.

Implications: A newly developed personal exposure kit (PEK) was used to monitor PM2.5 exposure of metropolitan citizens in their daily life. Different microenvironments and time durations caused various personal integrated exposure (PIE). The stationary monitoring method for PIE was also compared and evaluated with PEK. Positive protection actions can be taken after understanding the major contribution to PM2.5 exposure.  相似文献   


15.
The objective of this study was to estimate the residential infiltration factor (Finf) of fine particulate matter (PM2.5) and to develop models to predict PM2.5 Finf in Beijing. Eighty-eight paired indoor–outdoor PM2.5 samples were collected by Teflon filters for seven consecutive days during both non-heating and heating seasons (from a total of 55 families between August, 2013 and February, 2014). The mass concentrations of PM2.5 were measured by gravimetric method, and elemental concentrations of sulfur in filter deposits were determined by energy-dispersive x-ray fluorescence (ED-XRF) spectrometry. PM2.5 Finf was estimated as the indoor/outdoor sulfur ratio. Multiple linear regression was used to construct Finf predicting models. The residential PM2.5 Finf in non-heating season (0.70 ± 0.21, median = 0.78, n = 43) was significantly greater than in heating season (0.54 ± 0.18, median = 0.52, n = 45, p < 0.001). Outdoor temperature, window width, frequency of window opening, and air conditioner use were the most important predictors during non-heating season, which could explain 57% variations across residences, while the outdoor temperature was the only predictor identified in heating season, which could explain 18% variations across residences. The substantial variations of PM2.5 Finf between seasons and among residences found in this study highlight the importance of incorporating Finf into exposure assessment in epidemiological studies of air pollution and human health in Beijing. The Finf predicting models developed in this study hold promise for incorporating PM2.5 Finf into large epidemiology studies, thereby reducing exposure misclassification.

Implications: Failure to consider the differences between indoor and outdoor PM2.5 may contribute to exposure misclassification in epidemiological studies estimating exposure from a central site measurement. This study was conducted in Beijing to investigate residential PM2.5 infiltration factor and to develop a localized predictive model in both nonheating and heating seasons. High variations of PM2.5 infiltration factor between the two seasons and across homes within each season were found, highlighting the importance of including infiltration factor in the assessment of exposure to PM2.5 of outdoor origin in epidemiological studies. Localized predictive models for PM2.5 infiltration factor were also developed.  相似文献   


16.
Abstract

Wildfires and prescribed burns are receiving increasing attention as sources of fine particulate matter (PM2.5). The goal of this research project was to understand the impact of mitigation strategies for residences impacted by scheduled prescribed burns and wildfires. Pairs of residences were solicited to have PM2.5 concentrations monitored inside and outside of their houses during four fires. The effect of using air cleaners on indoor PM2.5 was investigated, as well as the effect of keeping windows closed. Appropriately sized air cleaners were provided to one of each pair of residences; occupants of all of the residences were asked to keep windows shut and minimize opening of exterior doors. Additionally, residents were asked to record all of the activities that may be a source of particulate matter, such as cooking and cleaning. Measurements were made during one prescribed burn and three wildfires during the 2002 fire season. Outdoor 24‐hr average PM2.5 concentrations ranging from 6 to 38 µg/m3 were measured during the fires, compared with levels of 2–5 µg/m3 during background measurements when no fires were burning. During the fires, PM2.5 was <3 µg/m3 inside all of the houses with air cleaners installed. This corresponds with a decrease of 63–88% in homes with the air cleaners operating when compared with homes without air cleaners. In the homes without the air cleaners, measured indoor concentrations were 58–100% of the concentrations measured outdoors.  相似文献   

17.
Indoor and outdoor particulate matter (PM0.3-10) number concentrations were established in two medieval churches in Cyprus. In both churches incense was burnt occasionally during Mass. The highest indoor PM0.5-1 concentrations compared with outdoors (10.7 times higher) were observed in the church that burning of candles indoors was allowed. Peak indoor black carbon concentration was 6.8 μg m−3 in the instances that incense was burning and 13.4 μg m−3 in the instances that the candles were burning (outdoor levels ranged between 0.6 and 1.3 μg m−3). From the water soluble inorganic components determined in PM10, calcium prevailed in all samples indoors or outdoors, whilst high potassium concentration indoors were a clear marker of combustion. Indoor sources of PM were clearly identified and their emission strengths were estimated via modeling of the results. Indoor estimated PM0.3-10 mass concentrations exceeded air quality standards for human health protection and for the preservation of works of art.  相似文献   

18.
ABSTRACT

We measured particulate matter (PM2.5 and PM10) exposures, home temperature, arterial blood oxygen saturation, blood pressure, and lung function in 30 volunteer Los Angeles area residents during four-day intervals. Continuous Holter electrocardiograms were recorded in a subgroup on the first two days. Subjects recorded symptoms and time-activity patterns in diaries during monitoring, and during a reference period one week earlier/later. All subjects had severe chronic obstructive pulmonary disease. PM10 (24-hr mean) at monitoring stations near subjects’ homes averaged 33 μg/m3, and ranged from 9 to 84 μpg/m3. In longitudinal analyses, day-to-day changes in PM2.5 and PM10 outside subjects’ homes significantly tracked concurrent station PM10 (r2 = 0.22 and 0.44, respectively). Indoor and personal concentrations were less related to station readings (r2 ≤ 0.1), but tracked each other (r2 ≥ 0.4). In-home temperatures tracked outdoor temperatures more for lows (r2 = 0.27) than for highs (r2 = 0.10). These longitudinal relationships of subject-oriented and station PM measurements were generally similar to cross-sectional relationships observed previously in similar subjects. Among health measurements, only blood pressure showed reasonably consistent unfavorable longitudinal associations with particulates, more with station or outdoor PM than with indoor or personal PM.  相似文献   

19.
Behavioral and environmental determinants of PM2.5 personal exposures were analyzed for 201 randomly selected adult participants (25–55 years old) of the EXPOLIS study in Helsinki, Finland. Personal exposure concentrations were higher than respective residential outdoor, residential indoor and workplace indoor concentrations for both smokers and non-smokers. Mean personal exposure concentrations of active smokers (31.0±31.4 μg m−3) were almost double those of participants exposed to environmental tobacco smoke (ETS) (16.6±11.8 μg m−3) and three times those of participants not exposed to tobacco smoke (9.9±6.2 μg m−3). Mean indoor concentrations of PM2.5 when a member of the household smoked indoors (20.8±23.9 μg m−3) were approximately 2.5 times the concentrations of PM2.5 when no smoking was reported (8.2±5.2 μg m−3). Interestingly, however, both mean (8.2 μg m−3) and median (6.9 μg m−3) residential indoor concentrations for non-ETS exposed participants were lower than residential outdoor concentrations (9.5 and 7.3 μg m−3, respectively). In simple linear regression models residential indoor concentrations were the best predictors of personal exposure concentrations. Correlations (r2) between PM2.5 personal exposure concentrations of all participants, both smoking and non-smoking, and residential indoor, workplace indoor, residential outdoor and ambient fixed site concentrations were 0.53, 0.38, 0.17 and 0.16, respectively. Predictors for personal exposure concentrations of non-ETS exposed participants identified in multiple regression were residential indoor concentrations, workplace concentrations and traffic density in the nearest street from home, which accounted for 77% of the variance. Subsequently, step-wise regression not including residential and workplace indoor concentrations as input (as these are frequently not available), identified ambient PM2.5 concentration and home location, as predictors of personal exposure, accounting for 47% of the variance. Ambient fixed site PM2.5 concentrations were closely related to residential outdoor concentrations (r2=0.9, p=0.000) and PM2.5 personal exposure concentrations were higher in summer than during other seasons. Personal exposure concentrations were significantly (p=0.040) higher for individuals living downtown compared with individuals in suburban family homes. Further analysis will focus on comparisons of determinants between Helsinki and other EXPOLIS centers.  相似文献   

20.
ABSTRACT

Particulate matter (PM) from poultry production facilities may strongly affect the health of animals and workers in the houses, and PM emitted to the ambient air is an important pollution source to the surrounding areas. Aviary system is considered as a welfare friendly production system for laying hens. However, its air quality is typically worse as compared with conventional cage systems, because of the higher PM concentration of indoor air and other airborne contaminants. Furthermore, PM’s physical property, which has a direct impact on the penetration depth into the lungs of the birds and humans, is largely unknown for the aviary system. Therefore, a systematic method was utilized to investigate the characteristics of particles in the aviary house with large cage aviary unit system (LCAU) in Beijing, China. For the field measurements, three measuring locations were selected with two inside and one outside the house with LCAU to continuously monitor PM concentrations and collect the samples for particle size distribution (PSD) analysis. Results showed that PM2.5, PM10, and total suspended particulate (TSP) concentrations averaged at 0.037 ± 0.025 mg/m3, 0.42 ± 0.10 mg/m3, and 1.92 ± 1.91 mg/m3, respectively. Particle concentrations increased from October to December due to less ventilation as the weather got colder, and were generally affected by stocking density, ventilation rate, birds’ activities, and housing system. Meanwhile, indoor PM2.5 concentration was easily impacted by the ambient air quality. Mass median diameter (MMD) and mass geometric standard deviation (MGSD) of the TSP during the measurement were 18.92 ± 7.08 μm and 3.11 ± 0.31, respectively. Count median diameter (CMD) and count geometric standard deviation (CGSD) were 1.94 ± 0.14 μm and 1.48 ± 0.08, respectively. Results indicated that the aviary system can attain a good indoor condition by suitable system design and environment control strategy.

Implications: Indoor PM2.5 concentration of the layer house can be significantly affected by ambient air quality when the air quality index (AQI) was larger than 100. PM2.5 and PM10 concentrations of the layer house with a LCAU system were comparable to the cage system. TSP concentration was higher, and PM size was larger than most of the cage system. System design, larger space volume, and higher ventilation rate were the main influence factors. Good indoor environment of the aviary system can be achieved through the reasonable design of the production system and appropriate environment control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号