首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Environmental Science and Pollution Research - This study investigated the seasonal variations of the ground-based PM2.5 concentration measured at an urban site and Terra MODIS satellite-based...  相似文献   

2.
Atmospheric remote sensing offers a unique opportunity to compute indirect estimates of air quality, which are critically important for the management and surveillance of air quality in megacities of developing countries, particularly in India and China, which have experienced elevated concentration of air pollution but lack adequate spatial-temporal coverage of air pollution monitoring. This article examines the relationship between aerosol optical depth (AOD) estimated from satellite data at 5 km spatial resolution and the mass of fine particles ≤2.5 μm in aerodynamic diameter (PM(2.5)) monitored on the ground in Delhi Metropolitan where a series of environmental laws have been instituted in recent years.PM(2.5) monitored at 113 sites were collocated by time and space with the AOD computed using the data from Moderate Resolution Imaging Spectroradiometer (MODIS onboard the Terra satellite). MODIS data were acquired from NASA's Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (DAAC). Our analysis shows a significant positive association between AOD and PM(2.5). After controlling for weather conditions, a 1% change in AOD explains 0.52±0.202% and 0.39±0.15% change in PM(2.5) monitored within ±45 and 150 min intervals of AOD data. This relationship will be used to estimate air quality surface for previous years, which will allow us to examine the time-space dynamics of air pollution in Delhi following recent air quality regulations, and to assess exposure to air pollution before and after the regulations and its impact on health.  相似文献   

3.
Multi-layer perceptron (MLP) artificial neural network (ANN) models are compared with traditional multiple regression (MLR) models for daily maximum and average O3 and particulate matter (PM10 and PM2.5) forecasting. MLP particulate forecasting models show little if any improvement over MLR models and exhibit less skill than do O3 forecasting models. Meteorological variables (precipitation, wind, and temperature), persistence, and co-pollutant data are shown to be useful PM predictors. If MLP approaches are adopted for PM forecasting, training methods that improve extreme value prediction are recommended.  相似文献   

4.
Non-mineral carbon is the main component of PM10 and PM2.5 at an urban roadside site in Madrid accounting for more than 50% of the total bulk mass in winter pollution episodes. In these cases a 70-80% of the particle mass is anthropogenic. Particles of crustal/mineral origin contribute significantly to the observed PM10 concentrations, especially in spring and summer. They have also been found in the PM2.5 fraction although secondary particles are the next most important contributor in this size. Long-range transport particle episodes of Saharan dust significantly contribute to exceedence of the new daily limiting PM10 value in the urban network and at nearby rural background stations. This type of long-range transport event also influences PM2.5 concentrations. The crustal contribution can account for up to 67 and 53% of the PM10 and PM2.5 bulk mass in such cases.  相似文献   

5.
Our objectives are to evaluate inter-continental source-receptor relationships for fine aerosols and to identify the regions whose emissions have dominant influence on receptor continents. We simulate sulfate, black carbon (BC), organic carbon (OC), and mineral dust aerosols using a global coupled chemistry-aerosol model (MOZART-2) driven with NCEP/NCAR reanalysis meteorology for 1997–2003 and emissions approximately representing year 2000. The concentrations of simulated aerosol species in general agree within a factor of 2 with observations, except that the model tends to overestimate sulfate over Europe in summer, underestimate BC and OC over the western and southeastern (SE) U.S. and Europe, and underestimate dust over the SE U.S. By tagging emissions from ten continental regions, we quantify the contribution of each region's emissions on surface aerosol concentrations (relevant for air quality) and aerosol optical depth (AOD, relevant for visibility and climate) globally. We find that domestic emissions contribute substantially to surface aerosol concentrations (57–95%) over all regions, but are responsible for a smaller fraction of AOD (26–76%). We define “background” aerosols as those aerosols over a region that result from inter-continental transport, DMS oxidation, and emissions from ships or volcanoes. Transport from other continental source regions accounts for a substantial portion of background aerosol concentrations: 36–97% for surface concentrations and 38–89% for AOD. We identify the Region of Primary Influence (RPI) as the source region with the largest contribution to the receptor's background aerosol concentrations (or AOD). We find that for dust Africa is the RPI for both aerosol concentrations and AOD over all other receptor regions. For non-dust aerosols (particularly for sulfate and BC), the RPIs for aerosol concentrations and AOD are identical for most receptor regions. These findings indicate that the reduction of the emission of non-dust aerosols and their precursors from an RPI will simultaneously improve both air quality and visibility over a receptor region.  相似文献   

6.
The particulate matter (PM) concentration and composition, the PM10, PM2.5, PM1 fractions, were studied in the urban area of Genoa, a coastal town in the northwest of Italy. Two instruments, the continuous monitor TEOM and the sequential sampler PARTISOL, were operated almost continuously on the same site from July 2001 to September 2004. Samples collected by PARTISOL were weighted to obtain PM concentration and then analysed by PIXE (particle induced X-ray emission) and by ED-XRF (energy dispersion X-ray fluorescence), obtaining concentrations for elements from Na to Pb. Some of the filters used in the TEOM microbalance were analysed by ED-XRF to calculate Pb concentration values averaged over 7-30 d periods.  相似文献   

7.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH.  相似文献   

8.
Abstract

Aerosol optical depth (AOD) acquired from satellite measurements demonstrates good correlation with particulate matter with diameters less than 2.5 µm (PM2.5) in some regions of the United States and has been used for monitoring and nowcasting air quality over the United States. This work investigates the relation between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD and PM2.5 over the 10 U.S. Environmental Protection Agency (EPA)-defined geographic regions in the United States on the basis of a 2-yr (2005–2006) match-up dataset of MODIS AOD and hourly PM2.5 measurements. The AOD retrievals demonstrate a geographical and seasonal variation in their relation with PM2.5. Good correlations are mostly observed over the eastern United States in summer and fall. The southeastern United States has the highest correlation coefficients at more than 0.6. The southwestern United States has the lowest correlation coefficient of approximately 0.2. The seasonal regression relations derived for each region are used to estimate the PM2.5 from AOD retrievals, and it is shown that the estimation using this method is more accurate than that using a fixed ratio between PM2.5 and AOD. Two versions of AOD from Terra (v4.0.1 and v5.2.6) are also compared in terms of the inversion methods and screening algorithms. The v5.2.6 AOD retrievals demonstrate better correlation with PM2.5 than v4.0.1 retrievals, but they have much less coverage because of the differences in the cloud-screening algorithm.  相似文献   

9.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   

10.
A Photochemical Trajectory Model (PTM), containing the Master Chemical Mechanism version 3.1 (MCM v3.1) coupled with an optimised representation of gas–aerosol absorptive partitioning of 365 oxygenated product species, has been used to simulate mass concentrations of secondary organic aerosol (SOA) for the conditions of the TORCH-2003 campaign in the south-east UK in late July and August 2003. A comprehensive reference dataset of 50 case study arrival events (and 4750 associated hourly air mass history events) has been compiled, which considers the base case conditions and scenarios in which emissions of anthropogenic pollution have been reduced by factors of up to 100. The relative contributions of SOA derived from anthropogenic and biogenic precursors are presented for the range of conditions, and the composition of these simulated components is discussed in terms of average molecular formulae, atomic ratios (H/C, O/C and N/C) and organic aerosol mass to organic carbon mass ratios (OM/OC), which are compared to reported measurements. The MCM v3.1 dataset has been used as a reference benchmark for development and optimisation of a reduced (14 species) SOA module for use with version 2 the Common Representative Intermediates mechanism (CRI v2), described in the first of two preceding companion papers [Jenkin, M.E., Watson, L.A., Utembe, S.R., Shallcross, D.E., 2008a. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: gas phase mechanism development. Atmospheric Environment, 42, pp. 7185–7195. doi:10.1016/j.atmosenv.2008.07.028.]. The resultant version of the PTM containing CRI v2 and the reduced SOA module has been used to simulate the entire TORCH-2003 campaign at hourly resolution, and the contributions of SOA derived from anthropogenic and biogenic precursors are presented and discussed. The reduced SOA module is also shown to be compatible with the most reduced CRI variant (CRI v2-R5), described in the second of two preceding companion papers [Watson, L.A., Shallcross, D.E., Utembe, S.R., Jenkin, M.E., 2008. A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: gas phase mechanism reduction. Atmospheric Environment, 42, pp. 7196–7204. doi:10.1016/j.atmosenv.2008.07.034.], which is considered appropriate as a traceable reference mechanism in global simulations.  相似文献   

11.
This work merges kinetic models for α-pinene and d-limonene which were individually developed to predict secondary organic aerosol (SOA) formation from these compounds. Three major changes in the d-limonene and α-pinene combined mechanism were made. First, radical–radical reactions were integrated so that radicals formed from both individual mechanisms all reacted with each other. Second, all SOA model species from both compounds were used to calculate semi-volatile partitioning for new semi-volatiles formed in the gas phase. Third particle phase reactions for particle phase α-pinene and d-limonene aldehydes, carboxylic acids, etc. were integrated. Experiments with mixtures of α-pinene and d-limonene, nitric oxide (NO), nitrogen dioxide (NO2), and diurnal natural sunlight were carried out in a dual 270 m3 outdoor Teflon film chamber located in Pittsboro, NC. The model closely simulated the behavior and timing for α-pinene, d-limonene, NO, NO2, O3 and SOA. Model sensitivities were tested with respect to effects of d-limonene/α-pinene ratios, initial hydrocarbon to NOx (HC0/NOx) ratios, temperature, and light intensity. The results showed that SOA yield (YSOA) was very sensitive to initial d-limonene/α-pinene ratio and temperature. The model was also used to simulate remote atmospheric SOA conditions that hypothetically could result from diurnal emissions of α-pinene, d-limonene and NOx. We observed that the volatility of the simulated SOA material on the aging aerosol decreased with time, and this was consistent with chamber observations. Of additional importance was that our simulation did not show a loss of SOA during the daytime and this was consistent with observed measurements.  相似文献   

12.
The uptake and elimination of six PBDE congeners (BDE-28, -47, -99, -100, -153, -209) were studied in juvenile common sole (Solea solea L.) exposed to spiked contaminated food over a three-month period, then depurated over a five-month period. The results show that all of the studied PBDEs accumulate in fish tissues, including the higher brominated congener BDE-209. Several additional PBDE congeners were identified in the tissues of exposed fish, revealing PBDE transformation, mainly via debromination. The identified congeners originating from PBDE debromination include BDE-49 and BDE-202 and a series of unidentified tetra-, penta-, and hepta- BDEs. Contaminant assimilation efficiencies (AEs) were related to their hydrophobicity (log Kow) and influenced by PBDE biotransformation. Metabolism via debromination appears to be a major degradation route of PBDEs in juvenile sole in comparison to biotransformation into hydroxylated metabolites.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号