首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.  相似文献   

2.
Agricultural opportunities to mitigate greenhouse gas emissions   总被引:15,自引:0,他引:15  
Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.  相似文献   

3.
The Pennsylvania greenhouse gas (GHG) emissions inventory presented in this paper provides detailed estimates of emissions and their sources for the six major categories of GHGs. The inventory was compiled using the current U.S. Environment Protection Agency methodology, which applies emissions factors to socioeconomic data, such as fossil energy use, vehicle miles traveled, and industrial production. The paper also contains an assessment of the methodology and suggestions for improving accounting with respect to process, sectoral, and geographic considerations. The study found that Pennsylvania emitted 77.4 million metric tons carbon equivalent of GHGs in 1990 and that this total increased by 3% to 79.8 million metric tons carbon equivalent by 1999. Despite this increase, however, the state's percentage contribution to the United States total declined during the decade. Pennsylvania's carbon dioxide (CO2) emissions from fossil fuels represented 92.4% of 1990 totals and declined to 90.5% in 1999. Electricity generation was the largest single source of CO2 emissions, being responsible for 38% of fossil fuel CO2 emissions in 1990 and 40% of the total in 1999. Transportation emissions accounted for the largest increases in emissions between 1990 and 1999, whereas industrial emissions accounted for the largest decrease. The overall trend indicates that Pennsylvania has been able to weaken the relationship between GHG emissions and economic growth.  相似文献   

4.
The objective of the study is to empirically examine the air pollution, greenhouse gas (GHG) emissions and low birth weight in Pakistan through the cointegration and error correction model over a 36-year time period, i.e., between 1975 and 2012. The study employed the Johansen cointegration technique to estimate the long-run relationship between the variables, while an error correction model was used to determine the short-run dynamics of the system. The study was limited to the following variables, including carbon dioxide emissions, methane emissions, nitrous oxide emissions, GHG emissions, and low birth weight in order to manage robust data analysis. The results reveal that air pollution and GHG emissions significantly affects the low birth weight in Pakistan. In the long run, carbon dioxide emissions act as a strong contributor for low birth weight, as the coefficient value indicates there is a more elastic relationship (i.e., ?1.214, p?p?p?相似文献   

5.
A general relationship between roadway tunnel air quality and vehicle emissions has been derived. The model includes the effect of pollutant deposition on the tunnel surfaces and dilution from ventilation. The model is applied to air quality measurements of SO2 and particulates obtained at the Tuscarora Mountain Tunnel. It is found that, if deposition is neglected, SO2 and sulfate emission factors for both gasoline and Diesel vehicles may be underestimated by ~ 10%. The derived deposition velocities are 0.07cms−1 for SO2, 0.03cms−1 for sulfate, and ~ 0.001 cms−1 for total suspended particulates and paniculate components (except sulfate). The last value is lower than smooth-surface values quoted for aerosol deposition, and the difference between the last two values presumably reflects the approximations in the model and/or the uncertainty in its input data.  相似文献   

6.
In this paper the authors have estimated for 1990 and 1995 the inventory of greenhouse gases CO2, CH4 and N2O for India at a national and sub-regional district level. The district level estimates are important for improving the national inventories as well as for developing sound mitigation strategies at manageable smaller scales. Our estimates indicate that the total CO2, CH4 and N2O emissions from India were 592.5, 17, 0.2 and 778, 18, 0.3 Tg in 1990 and 1995, respectively. The compounded annual growth rate (CAGR) of these gases over this period were 6.3, 1.2 and 3.3%, respectively. The districts have been ranked according to their order of emissions and the relatively large emitters are termed as hotspots. A direct correlation between coal consumption and districts with high CO2 emission was observed. CO2 emission from the largest 10% emitters increased by 8.1% in 1995 with respect to 1990 and emissions from rest of the districts decreased over the same period, thereby indicating a skewed primary energy consumption pattern for the country. Livestock followed by rice cultivation were the dominant CH4 emitting sources. The waste sector though a large CH4 emitter in the developed countries, only contributed about 10% the total CH4 emission from all sources as most of the waste generated in India is allowed to decompose aerobically. N2O emissions from the use of nitrogen fertilizer were maximum in both the years (more than 60% of the total N2O). High emission intensities, in terms of CO2 equivalent, are in districts of Gangetic plains, delta areas, and the southern part of the country. These overlap with districts with large coal mines, mega power plants, intensive paddy cultivation and high fertilizer use. The study indicates that the 25 highest emitting districts account for more than 37% of all India CO2 equivalent GHG emissions. Electric power generation has emerged as the dominant source of GHG emissions, followed by emissions from steel and cement plants. It is therefore suggested, to target for GHG mitigation, the 40 largest coal-based thermal plants, five largest steel plants and 15 largest cement plants in India as the first step.  相似文献   

7.
The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.  相似文献   

8.

Background, aim and scope  

Studies on the contribution of milk production to global greenhouse gas (GHG) emissions are rare (FAO 2010) and often based on crude data which do not appropriately reflect the heterogeneity of farming systems. This article estimates GHG emissions from milk production in different dairy regions of the world based on a harmonised farm data and assesses the contribution of milk production to global GHG emissions.  相似文献   

9.
The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975–2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.  相似文献   

10.
The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions.

Implications: Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to increase both carbonyl and nitrous oxide emissions.  相似文献   


11.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   

12.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

13.
城市污水污泥处置方式的温室气体排放比较分析   总被引:2,自引:0,他引:2  
针对我国现在主流的城市污水污泥处置方法:填埋,焚烧,堆肥。用IPCC中推荐的方法和缺省值,对处置过程中产生的温室气体的直接排放、间接排放和替代排放做了计算和分析。填埋过程计算排放的温室气体有CH4,焚烧过程计算排放的有温室气体CO2和N2O,堆肥过程计算的排放的有温室气体CO2和N2O,最终比较的结果都折算成CO2的排放。结果表明,污泥填埋、焚烧、堆肥所产生的CO2的净排放量分别为695.847 kg CO2/t、443.643 kg CO2/t、511.817 kgCO2/t。由于考虑了堆肥以后的有机肥利用,从减排以及污泥资源化的角度分析,得出堆肥是相对好的污泥处置方式。  相似文献   

14.
A network of 10 stations, with passive sampling for VOCs (including benzene), NO2, and SO2, over 2-week periods, grab sampling for CO, and 48-h pumped sampling for PM10, was set up to make an air quality survey for 12 months around Aberdeen Harbour. Benzene, CO, SO2 and PM10 were always well below the AQS target values. However, NO2 frequently showed a pronounced gradient across the harbour reaching its highest concentrations at the city end, indicating that the road traffic was the principal source of the pollution. This was backed up by the predominance of aromatics in the VOCs in the city centre, derived from petrol engined vehicles, compared to the predominance of alkanes and alkenes around the docks, derived from diesel engined heavy trucks and possibly ships. Black carbon on the PM10 filters also showed a gradient with highest levels in the city centre. It is proposed that for such surveys in future, NO2 and black carbon would be the two most informative parameters.This emissions inventory has shown first, that trucks contribute very little to the total, and second, that the ro-ro ferries are the major contributors as they burn light fuel oil while the oil platform supply vessels burn low-sulphur marine gas oil with around 0.1% S. When the whole picture of the emissions from the city is considered, the emissions from the harbour constitute only a small part.  相似文献   

15.
Environmental Science and Pollution Research - Antibiotics are commonly used in intensive farming, leading to multiple antibiotic residue in livestock waste. However, the effects of multiple...  相似文献   

16.
17.
Environmental Science and Pollution Research - The water industry plays an important role in reducing greenhouse gas (GHG) emissions and therefore, moving to a low-carbon urban water cycle is of...  相似文献   

18.
Resolving local-scale emissions for modeling air quality near roadways   总被引:1,自引:0,他引:1  
A large body of literature published in recent years suggests increased health risk due to exposure of people to air pollution in close proximity to roadways. As a result, there is a need to more accurately represent the spatial concentration gradients near roadways to develop mitigation strategies. In this paper, we present a practical, readily adaptable methodology, using a "bottom-up" approach to develop a detailed highway vehicle emission inventory that includes emissions for individual road links. This methodology also takes advantage of geographic information system (GIS) software to improve the spatial accuracy of the activity information obtained from a Travel Demand Model. In addition, we present an air quality modeling application of this methodology in New Haven, CT. This application uses a hybrid modeling approach, in which a regional grid-based model is used to characterize average local ambient concentrations, and a Gaussian dispersion model is used to provide texture within the modeling domain because of spatial gradients associated with highway vehicle emissions and other local sources. Modeling results show substantial heterogeneity of pollutant concentrations within the modeling domain and strong spatial gradients associated with roadways, particularly for pollutants dominated by direct emissions.  相似文献   

19.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   

20.
Environmental Science and Pollution Research - Greenhouse gas from rice production has become a great concern and the focus of a lot of research in recent years. The main aim of the study was to...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号