首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

2.
Abstract

This paper analyzes day-of-week variations in concentrations of particulate matter (PM) in California. Because volatile organic compounds (VOCs) and oxides of nitrogen (NOx) are not only precursors of ozone (O3) but also of secondary PM, it is useful to know whether the variations by day of week in these precursors are also evident in PM data. Concentrations of PM ≤10 μm (PM10) and ≤2.5[H9262]m in aerodynamic diameter (PM2.5) were analyzed. PM concentrations exhibit a general weekly pattern, with the maximum occurring late in the workweek and the minimum occurring on weekends (especially Sunday); however, this pattern does not prevail at all sites and areas. PM nitrate (NO3 -) data from Size Selective Inlet (SSI) samplers in the South Coast Air Basin (SoCAB) tend to be somewhat lower on weekends compared with weekdays. During 1988–1991, the weekend average was lower than the weekday average at 8 of 13 locations, with an average decrease of 1%. During 1997–2000, the weekend average was lower than the weekday average at 10 of 13 locations, with an average decrease of 6%. The weekend averages are generally lower than weekday averages for sulfates, organic carbon, and elemental carbon. Because heavy-duty trucks typically represent a major source of elemental carbon, the weekend decrease in heavy-duty truck traffic may also result in a decrease in ambient elemental carbon concentrations.  相似文献   

3.
Abstract

Vehicle gaseous emissions (NO, CO, CO2, and hydrocarbon [HC]) and driver’s particle exposures (particulate matter <1 μm [PM1], <2.5 μm [PM2.5], and<10 μm [PM10]) were measured using a mobile laboratory to follow a wide variety of vehicles during very heavy traffic congestion in Macao, Special Administrative Region, People’s Republic of China, an urban area having one of the highest population densities in the world. The measurements were taken with high time resolution so that fluctuations in the emissions can be seen readily during vehicle acceleration, cruising, deceleration, and idling. The tests were conducted in close proximity to the vehicles, with the inlet of a five-gas analyzer mounted on the front bumper of the mobile laboratory, and the distance between the vehicles was usually within several meters. To measure the driver’s particle exposures, the inlets of the particle analyzers were mounted at the height of the driver’s breathing position in the mobile laboratory, with the driver’s window open. A total of 178 and 113 vehicles were followed individually to determine the gaseous emission factor and the driver’s particle exposures, respectively, for motorcycle, passenger car, taxi, truck, and bus. The gaseous emission factors were used to model the roadside air quality, and good correlations between the modeled and monitored CO, NO2, and nitrogen oxide (NOx) verified the reliability of the experiments. Compared with petrol passenger cars and petrol trucks, diesel taxies and diesel trucks emitted less CO but more NOx. The impact of urban canyons is shown to cause a significant increase in the PM1 peak. The background concentrations contributed a significant amount of the driver’s particle exposures.  相似文献   

4.
ABSTRACT

Recent evidence has implicated the fine fraction of particulate as the major contributor to the increase in mortality and morbidity related to particulate ambient levels. We therefore evaluated the impact of daily variation of ambient PM2.5 and other pollutants on the number of daily respiratory-related emergency visits (REVs) to a large pediatric hospital of Santiago, Chile. The study was conducted from February 1995 to August 1996. Four monitoring stations from the network of Santiago provided air pollution data. The PM2.5 24-hr average ranged from 10 to 111 μg/m3 during September to April (warm months) and from 10 to 156 μg/m3 during May to August (cold months). Other contaminants (ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2)) were, in general, low during the study period. The increase in REVs was significantly related to PM10 and PM2.5 ambient levels, with the relationship between PM2.5 levels and the number of REVs the stronger. During the cold months, an increase of 45 ìg/m3 in the PM2.5 24-hr average was related to a 2.7% increase in the number of REVs (95% CI, 1.1–4.4%) with a two-day lag, and to an increase of 6.7% (95% CI, 1.7–12.0%) in the number of visits for pneumonia with a three-day lag. SO2 and NO2 were also related to REVs. We conclude that urban air pollutant mixture, particularly fine particulates, adversely affect the respiratory health of children residing in Santiago.  相似文献   

5.
Abstract

One-hour average ambient concentrations of particulate matter (PM) with an aerodynamic diameter <2.5 μm (PM2.5) were determined in Steubenville, OH, between June 2000 and May 2002 with a tapered element oscillating microbalance (TEOM). Hourly average gaseous copollutant [carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), and ozone (O3)] concentrations and meteorological conditions also were measured. Although 75% of the 14,682 hourly PM2.5 concentrations measured during this period were ≤17 μg/m3, concentrations >65 μg/m3 were observed 76 times. On average, PM2.5 concentrations at Steubenville exhibited a diurnal pattern of higher early morning concentrations and lower afternoon concentrations, similar to the diurnal profiles of CO and NOx. This pattern was highly variable; however, PM2.5 concentrations >65 μg/m3 were never observed during the mid-afternoon between 1:00 p.m. and 5:00 p.m. EST. Twenty-two episodes centered on one or more of these elevated concentrations were identified. Five episodes occurred during the months June through August; the maximum PM2.5 concentration during these episodes was 76.6 μg/m3. Episodes occurring during climatologically cooler months often featured higher peak concentrations (five had maximum concentrations between 95.0 and 139.6 μg/m3), and many exhibited strong covariation between PM2.5 and CO, NOx, or SO2. Case studies suggested that nocturnal surface-based temperature inversions were influential in driving high nighttime concentrations of these species during several cool season episodes, which typically had dramatically lower afternoon concentrations. These findings provide insights that may be useful in the development of PM2.5 reduction strategies for Steubenville, and suggest that studies assessing possible health effects of PM2.5 should carefully consider exposure issues related to the intraday timing of PM2.5 episodes, as well as the potential for toxicological interactions among PM2.5 and primary gaseous pollutants.  相似文献   

6.
Abstract

Geographic and temporal variations in the concentration and composition of particulate matter (PM) provide important insights into particle sources, atmospheric processes that influence particle formation, and PM management strategies. In the nonurban areas of California, annual-average PM2.5 and PM10 concentrations range from 3 to 10 [H9262]g/m3 and from 5 to 18 µg/m3, respectively. In the urban areas of California, annual-averages for PM2.5 range from 7 to 30 [H9262]g/m3, with observed 24-hr peaks reaching levels as high as 160 [H9262]g/m3. Within each air basin, exceedances are a mixture of isolated events as well as periods of elevated PM2.5 concentrations that are more prolonged and regional in nature. PM2.5 concentrations are generally highest during the winter months. The exception is the South Coast Air Basin, where fairly high values occur throughout the year. Annual-average PM2.5 mass, as well as the concentrations of major components, declined from 1988 to 2000. The declines are especially pronounced for the sulfate (SO4 2?) and nitrate (NO3 ?) components of PM2.5 and PM10 and correlate with reductions in ambient levels of oxides of sulfur (SOx) and oxides of nitrogen (NOx). Annual averages for PM10–2.5 and PM10 exhibited similar downwind trends from 1994 to 1999, with a slightly less pronounced decrease in the coarse fraction.  相似文献   

7.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


8.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

9.
Abstract

The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29–July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb.

Both models predict similar amounts of sulfate (SO4 2?) and organic matter, and both predict SO4 2? to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4 +), nitrate (NO3 ?), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3 ?,NH4 +, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37–43% and –33–4% for CMAQ and 50–59% and 7–30% for PMCAMx. Both models predict the largest MNGEs for NO3 ? (98–104% for CMAQ, 138–338% for PMCAMx). The inaccurate NO3 ? predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

10.
ABSTRACT

Because the U. S. Environmental Protection Agency (EPA) has changed the National Ambient Air Quality Standards (NAAQS) for ambient particulate matter (PM), there is a great deal of interest in determining recent PM trends. This paper examines trends in PM10 (i.e., particulate matter less than 10 micrometers in diameter) for areas of the United States based on their attainment status—for PM10 and ozone nonattainment and attainment areas. The analysis also focuses on urban, suburban, and rural areas, and eastern and western areas. The time period of evaluation is from 1988 through 1995. To shed further light on the ambient PM10 trends, trends in ambient SO2, NO2, and volatile organic compounds (VOCs) are also analyzed. Finally, trends in emission inventories of SO2, NOx, VOCs, and PM10 are evaluated. Results of the analysis show that widespread and similar reductions in PM10 levels have occurred over the last seven years. Annual reductions range from 3.0% to 3.8%, with the greatest reductions coming in PM10 nonattainment areas, but with very significant reductions also in PM10 attainment areas, ozone attainment areas, and rural areas. The widespread reductions appear to be due to a set of controls or common factors that are having a fairly uniform effect in all of the areas. The consistency of the reductions in different areas suggests that the reductions may also be primarily in the fine particles (i.e., those less than 2.5 micrometers in diameter, or PM2.5), which are more readily transported than coarse particles.  相似文献   

11.
Abstract

Airborne fine particles of PM2.5-10 and PM2.5 in Bangkok, Nonthaburi, and Ayutthaya were measured from December 22, 1998, to March 26, 1999, and from November 30, 1999, to December 2, 1999. Almost all the PM10 values in the high-polluted (H) area exceeded the Thailand National Ambient Air Quality Standards (NAAQS) of 120 μg/m3. The low-polluted (L) area showed low PM10 (34–74 μg/m3 in the daytime and 54–89 μg/m3 at night). PM2.5 in the H area varied between 82 and 143 μg/m3 in the daytime and between 45 and 146 μg/m3 at night. In the L area, PM2.5 was quite low both day and night and varied between 24 and 54 μg/m3, lower than the U.S. Environmental Protection Agency (EPA) standard (65 μg/m3). The personal exposure results showed a significantly higher proportion of PM2.5 to PM10 in the H area than in the L area (H = 0.80 ± 0.08 and L = 0.65 ± 0.04).

Roadside PM10 was measured simultaneously with the Thailand Pollution Control Department (PCD) monitoring station at the same site and at the intersections where police work. The result from dual simultaneous measurements of PM10 showed a good correlation (correlation coefficient: r = 0.93); however, PM levels near the roadside at the intersections were higher than the concentrations at the monitoring station. The relationship between ambient PM level and actual personal exposures was examined. Correlation coefficients between the general ambient outdoors and personal exposure levels were 0.92 for both PM2.5 and PM10.

Bangkok air quality data for 1997–2000, including 24-hr average PM10, NO2, SO2, and O3 from eight PCD monitoring stations, were analyzed and validated. The annual arithmetic mean PM10 of the PCD data at the roadside monitoring stations for the last 3 years decreased from 130 to 73 μg/m3, whereas the corresponding levels at the general monitoring stations decreased from 90 to 49 μg/m3. The proportion of days when the level of the 24-hr average PM10 exceeded the NAAQS was between 13 and 26% at roadside stations. PCD data showed PM10 was well correlated with NO2 but not with SO2, suggesting that automobile exhaust is the main source of the particulate air pollution. The results obtained from the simultaneous measurement of PM2.5 and PM10 indicate the potential environmental health hazard of fine particles. In conclusion, Bangkok traffic police were exposed to high levels of automobile-derived particulate air pollution.  相似文献   

12.
Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO42-), nitrate (NO3?) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO42? concentration, but clearly overestimated PM2.5 NO3? concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3? concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3?.
Implications: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.  相似文献   

13.
An evaluation of air pollution at the Bily Kriz mountains in the Czech Republic is given. Annual daily concentrations of sulphur dioxide (SO2), nitrogen oxides (NOx), particulate matter of size 10 mm (PM10) and ozone (O3) measured in the years 1994–2000 are presented. Air pollution at Bily Kriz is assessed with the reference to the European Union Directives and the standards adopted by the Czech Republic. In general, the concentrations of air pollutants were lower in 1996 for ozone and decreased for SO2, NOx and PM10 from 1994. The daily values of SO2 and PM10 exceeded the European Union limits in approximately 0.0% and 5.5% of cases, respectively. The values of ozone exceeded the limits for the considered period.  相似文献   

14.
ABSTRACT

The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of 1) PM2.5, PM10, and coarse (PM10 minus PM2.5) mass; 2) PM2.5 SO4 -2, NO3 -, carbon, light absorption, and light extinction; 3) numbers of particles in discrete size bins ranging from 0.01 to ~10μm; 4) criteria pollutant gases (O3, CO, NOx); 5) reactive gases (NO2, NOy, HNO3, peroxyacetyl nitrate [PAN], NH3); and 6) single particle characterization by time-of-flight mass spectrometry. Field sampling and laboratory analysis are applied for gaseous and particulate organic compounds (light hydrocarbons, heavy hydrocarbons, carbonyls, polycyclic aromatic hydrocarbons [PAH], and other semi-volatiles), and PM2.5 mass, elements, ions, and carbon. Observables common to other Supersites are 1) daily PM2.5 24-hr average mass with Federal Reference Method (FRM) samplers; 2) continuous hourly and 5-min average PM2.5 and PM10 mass with beta attenuation monitors (BAM) and tapered element oscillating microbalances (TEOM); 3) PM2.5 chemical specia-tion with a U.S. Environmental Protection Agency (EPA) speciation monitor and protocol; 4) coarse particle mass by dichotomous sampler and difference between PM10 and PM2.5 BAM and TEOM measurements; 5) coarse particle chemical composition; and 6) high sensitivity and time resolution scalar and vector wind speed, wind direction, temperature, relative humidity, barometric pressure, and solar radiation. The Fresno Supersite is coordinated with health and toxicological studies that will use these data in establishing relationships with asthma, other respiratory disease, and cardiovascular changes in human and animal subjects.  相似文献   

15.
The concentrations of respirable suspended particulates (PM10), fine suspended particulates (PM2.5) and nitrogen dioxide (NO2) were measured in various locations over the territory of Hong Kong. In order to study the contributions of these pollutants from motor vehicles and their characteristics, the attention was focused on the roadside, street-level concentrations. A statistical analysis of the sampling results was conducted to obtain general characteristics of the roadside particulate and nitrogen dioxide pollution and to investigate the effects of traffic volume and meteorological factors on the pollution levels. High correlation coefficients are found between PM10, PM2.5 and NO2 concentration.  相似文献   

16.
Air pollution has been an increasing concern within the Kingdom of Saudi Arabia and other Middle Eastern countries. In this work the authors present an analysis of daily ozone (O3), nitrogen oxide (NOx), and particulate matter (<10 μm aerodynamic diameter; PM10) concentrations for two years (2010 and 2011) at sites in and around the coastal city of Jeddah, as well as a remote background site for comparison. Monthly and weekly variations, along with their implications and consequences, were also examined. O3 within Jeddah was remarkably low, and exhibited the so-called weekend effect—elevated O3 levels on the weekends, despite reduced emissions of O3 precursors on those days. Weekend O3 increases averaged between 12% and 14% in the city, suggesting that NOx/volatile organic compound (VOC) ratios within cities such as Jeddah may be exceptionally high. Sites upwind or far removed from Jeddah did not display this weekend effect. Based on these results, emission control strategies in and around Jeddah must carefully address NOx/VOC ratios so as to reduce O3 at downwind locations without increasing it within urban locations themselves. PM10 concentrations within Jeddah were elevated compared with North American cites of similar climatology, though comparable to other large cities within the Middle East.
Implications:Daily concentrations of O3, PM10, and NOx in and around the city of Jeddah, Saudi Arabia, are analyzed and compared with those of other reference cities. Extremely low O3 levels, along with a significant urban weekend effect (higher weekend O3, despite reduced NOx concentrations), is apparent, along with high levels of PM10 within the city. Urban O3 in Jeddah was found to be lower than that of other comparable cities, but the strong weekend effect suggests that care must be taken to reduce downwind O3 levels without increasing them within the city itself. Further research into the emissions and chemistry contributing to the reduced O3 levels within the city is warranted.  相似文献   

17.
Federal Tier 3 motor vehicle emission and fuel sulfur standards have been promulgated in the United States to help attain air quality standards for ozone and PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm). The authors modeled a standard similar to Tier 3 (a hypothetical nationwide implementation of the California Low Emission Vehicle [LEV] III standards) and prior Tier 2 standards for on-road gasoline-fueled light-duty vehicles (gLDVs) to assess incremental air quality benefits in the United States (U.S.) and the relative contributions of gLDVs and other major source categories to ozone and PM2.5 in 2030. Strengthening Tier 2 to a Tier 3-like (LEV III) standard reduces the summertime monthly mean of daily maximum 8-hr average (MDA8) ozone in the eastern U.S. by up to 1.5 ppb (or 2%) and the maximum MDA8 ozone by up to 3.4 ppb (or 3%). Reducing gasoline sulfur content from 30 to 10 ppm is responsible for up to 0.3 ppb of the improvement in the monthly mean ozone and up to 0.8 ppb of the improvement in maximum ozone. Across four major urban areas—Atlanta, Detroit, Philadelphia, and St. Louis—gLDV contributions range from 5% to 9% and 3% to 6% of the summertime mean MDA8 ozone under Tier 2 and Tier 3, respectively, and from 7% to 11% and 3% to 7% of the maximum MDA8 ozone under Tier 2 and Tier 3, respectively. Monthly mean 24-hr PM2.5 decreases by up to 0.5 μg/m3 (or 3%) in the eastern U.S. from Tier 2 to Tier 3, with about 0.1 μg/m3 of the reduction due to the lower gasoline sulfur content. At the four urban areas under the Tier 3 program, gLDV emissions contribute 3.4–5.0% and 1.7–2.4% of the winter and summer mean 24-hr PM2.5, respectively, and 3.8–4.6% and 1.5–2.0% of the mean 24-hr PM2.5 on days with elevated PM2.5 in winter and summer, respectively.

Implications: Following U.S. Tier 3 emissions and fuel sulfur standards for gasoline-fueled passenger cars and light trucks, these vehicles are expected to contribute less than 6% of the summertime mean daily maximum 8-hr ozone and less than 7% and 4% of the winter and summer mean 24-hr PM2.5 in the eastern U.S. in 2030. On days with elevated ozone or PM2.5 at four major urban areas, these vehicles contribute less than 7% of ozone and less than 5% of PM2.5, with sources outside North America and U.S. area source emissions constituting some of the main contributors to ozone and PM2.5, respectively.  相似文献   

18.
Abstract

We evaluated day-of-week differences in mean concentrations of ozone (O3) precursors (nitric oxide [NO], nitrogen oxides [NOx], carbon moNOxide [CO], and volatile organic compounds [VOCs]) at monitoring sites in 23 states comprising seven geographic focus areas over the period 1998– 2003. Data for VOC measurements were available for six metropolitan areas in five regions. We used Wednesdays to represent weekdays and Sundays to represent weekends; we also analyzed Saturdays. At many sites, NO, NOx, and CO mean concentrations decreased at all individual hours from 6:00 a.m. to 3:00 p.m. on Sundays compared with corresponding Wednesday means. Statistically significant (p < 0.01) weekend decreases in ambient concentrations were observed for 92% of NOx sites, 89% of CO sites, and 23% of VOC sites. Nine-hour (6:00 a.m. to 3:00 p.m.) mean concentrations of NO, NOx, CO, and VOCs declined by 65, 49, 28, and 19%, respectively, from Wednesdays to Sundays (median site responses). Despite the large reductions in ambient NOx and moderate reductions in ambient CO and VOC concentrations on weekends, ozone and particulate matter (PM) nitrate did not exhibit large changes from week-days to weekends. The median differences between Wednesday and Sunday mean ozone concentrations at all monitoring sites ranged from 3% higher on Sundays for peak 8-hr concentrations determined from all monitoring days to 3.8% lower on Sundays for peak 1-hr concentrations on extreme-ozone days. Eighty-three percent of the sites did not show statistically significant differences between Wednesday and weekend mean concentrations of peak ozone. Statistically significant weekend ozone decreases occurred at 6% of the sites and significant increases occurred at 11% of the sites. Average PM nitrate concentrations were 2.6% lower on Sundays than on Wednesdays. Statistically significant Sunday PM nitrate decreases occurred at one site and significant increases occurred at seven sites.  相似文献   

19.
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb.  相似文献   

20.
ABSTRACT

The chemical mass balance (CMB) model was applied to winter (November through January) 1991–1996 PM2.5 and PM10 data from the Sacramento 13th and T Streets site in order to identify the contributions from major source categories to peak 24-hr ambient PM2.5 and PM10 levels. The average monthly PM10 monitoring data for the nine-year period in Sacramento County indicate that elevated concentrations are typical in the winter months. Concentrations on days of highest PM10 are dominated by the PM2.5 fraction. One factor contributing to increased PM2.5 concentrations in the winter is meteorology (cool temperatures, low wind speeds, low inversion layers, and more humid conditions) that favors the formation of secondary nitrate and sulfate aerosols. Residential wood burning also elevates fine particulate concentrations in the Sacramento area.

The results of the CMB analysis highlight three key points. First, the source apportionment results indicate that primary motor vehicle exhaust and wood smoke are significant sources of both PM2.5 and PM10 in winter. Second, nitrates, secondarily formed as a result of motor-vehicle and other sources of nitrogen oxide (NOx), are another principal cause of the high PM2.5 and PM10 levels during the winter months. Third, fugitive dust, whether it is resuspended soil and dust or agricultural tillage, is not the major contributor to peak winter PM2.5 and PM10 levels in the Sacramento area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号