首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Three modeling approaches, the U.S. Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) zero-out, the Comprehensive Air quality Model with extensions (CAMx) zero-out, and the CAMx probing tools ozone source apportionment tool (OSAT), were used to project the contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The CMAQ and CAMx zero-out or brute-force approaches predicted generally similar contributions for most of the source categories, with some small differences. One of the important findings from this study was that both the CMAQ and CAMx zero-out approaches tended to apportion a larger contribution to the “other” category than the OSAT approach. For the OSAT approach, this category is the difference between the total emissions and the sum of the tracked emissions and consists of non-U.S. emissions. For the zero-out approach, it also includes the effects of nonlinearities in the system because the sum of the sensitivities of all sources is not necessarily equal to the sum of their contributions in a nonperturbed environment. The study illustrates the strengths and weaknesses of source apportionment approaches, such as OSAT, and source sensitivity approaches, such as zero-out. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease at all the selected monitors for all the simulations in each city, except at the downtown Los Angeles monitor. Both the CMAQ and CAMx results showed all modeled locations project attainment in 2018 and 2030 to the current National Ambient Air Quality Standards (NAAQS) level of 75 ppb, except the selected Los Angeles monitor in 2018 and the selected San Bernardino monitor in 2018 and 2030.
Implications:This study illustrates the strengths and weaknesses of three modeling approaches, CMAQ zero-out, CAMx zero-out, and OSAT to project contributions of various source categories to future year design values for summer 8-hr average ozone concentrations at selected U.S. monitors. The OSAT approach is suitable for studying source contributions, whereas the zero-out approach is suitable for studying response to emission changes. Future year design values of summer 8-hr average ozone concentrations were projected to decrease, except at the downtown Los Angeles monitor. Comparing projections with the current NAAQS (75 ppb) show attainment everywhere, except two locations in 2018 and one location in 2030.  相似文献   

2.
A high ozone event in the Houston–Galveston–Brazoria area was utilized to study the shortcomings of the current air quality models. To improve the baseline simulations with the Comprehensive Air quality Model with Extensions (CAMx) for developing the state implementation plan, the Texas Commission on Environmental Quality (TCEQ) imputed emissions of highly reactive volatile organic compounds (HRVOCs) by scaling the amount of fugitive emissions of olefins to co-emitted NOx from selected point sources, effectively multiplying by 3–12 times over the regular inventory values. In this paper, CAMx and the Community Multiscale Air Quality (CMAQ) model were used to determine if the imputed HRVOC emissions were consistent with the observed atmospheric conditions. With the base emissions, CMAQ and CAMx both with the Carbon-Bond 4 (CB-4) mechanism simulated similar ozone concentrations. But with the imputed HRVOC emissions, CMAQ predicted lower ozone peaks than CAMx in the vicinity and downwind of the Ship Channel and other highly HRVOC-rich areas. Based on analyses of sensitivity simulations of CMAQ with different emission inputs and vertical diffusion algorithms in the model, we found that the modeled atmosphere lacked reactivity to produce the observed high ozone event. Although the imputed HRVOC emissions improved ozone prediction at the surface sites, but the ethylene concentrations were not consistent with the measurements at the super sites (La Porte and Clinton) and by NOAA aircraft. Several sensitivity tests designed to provide additional radicals into the system and other research results suggested that the lack of reactivity may need to be corrected by targeted, and probably of episodic, increase of HRVOC emissions, from the sources in the Houston Ship Channel. Additional investigation of the ozone production efficiency for different chemical mechanisms is necessary to pinpoint the emissions uncertainty issues.  相似文献   

3.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


4.
The relationship between emission reductions and changes in ozone can be studied using photochemical grid models. These models are updated with new information as it becomes available. The primary objective of this study was to update the previous Collet et al. studies by using the most up-to-date (at the time the study was done) modeling emission tools, inventories, and meteorology available to conduct ozone source attribution and sensitivity studies. Results show future-year, 2030, design values for 8-hr ozone concentrations were lower than base-year values, 2011. The ozone source attribution results for selected cities showed that boundary conditions were the dominant contributors to ozone concentrations at the western U.S. locations, and were important for many of the eastern U.S. locations. Point sources were generally more important in the eastern United States than in the western United States. The contributions of on-road mobile emissions were less than 5 ppb at a majority of the cities selected for analysis. The higher-order decoupled direct method (HDDM) results showed that in most of the locations selected for analysis, NOx emission reductions were more effective than VOC emission reductions in reducing ozone levels. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.

Implications: The relationship between emission reductions and changes in ozone can be studied using photochemical grid models, which are updated with new available information. This study was to update the previous Collet et al. studies by using the most current, at the time the study was done, models and inventory to conduct ozone source attribution and sensitivity studies. The source attribution results from this study provide useful information on the important source categories and provide some initial guidance on future emission reduction strategies.  相似文献   


5.
Source apportionment of fine particles (PM2.5, particulate matter < 2 microm in aerodynamic diameter) is important to identify the source categories that are responsible for the concentrations observed at a particular receptor. Although receptor models have been used to do source apportionment, they do not fully take into account the chemical reactions (including photochemical reactions) involved in the formation of secondary fine particles. Secondary fine particles are formed from photochemical and other reactions involving precursor gases, such as sulfur dioxide, oxides of nitrogen, ammonia, and volatile organic compounds. This paper presents the results of modeling work aimed at developing a source apportionment of primary and secondary PM2.5. On-road mobile source and point source inventories for the state of Tennessee were estimated and compiled. The national emissions inventory for the year 1999 was used for the other states. U.S. Environmental Protection Agency Models3/Community Multi-Scale Air Quality modeling system was used for the photochemical/secondary particulate matter modeling. The modeling domain consisted of a nested 36-12-4-km domain. The 4-km domain covered the entire state of Tennessee. The episode chosen for the modeling runs was August 29 to September 9, 1999. This paper presents the approach used and the results from the modeling and attempts to quantify the contribution of major source categories, such as the on-road mobile sources (including the fugitive dust component) and coal-fired power plants, to observed PM2.5 concentrations in Tennessee. The results of this work will be helpful in policy issues targeted at designing control strategies to meet the PM2.5 National Ambient Air Quality Standards in Tennessee.  相似文献   

6.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

7.
Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM < or = 10 microm in aerodynamic diameter) and PM2.5 (PM < or = 2.5 microm in aerodynamic diameter) indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment studies attempted to differentiate between contributions from gasoline and diesel motor vehicle combustion. Several source apportionment studies conducted in the United States suggested that gasoline combustion from mobile sources contributed more to ambient PM than diesel combustion. However, existing emission inventories for the United States indicated that diesels contribute more than gasoline vehicles to ambient PM concentrations. A comprehensive testing program was initiated in the Kansas City metropolitan area to measure PM emissions in the light-duty, gasoline-powered, on-road mobile source fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on vehicle PM mass emissions, with rates increasing with decreasing temperatures.  相似文献   

8.
Ozone remains one of the most recalcitrant air pollution problems in the US. Hourly emissions fields used in air quality models (AQMs) generally show less temporal variability than corresponding measurements from continuous emissions monitors (CEM) and field campaigns would imply. If emissions control scenarios to reduce emissions at peak ozone forming hours are to be assessed with AQMs, the effect of emissions' daily variability on modeled ozone must be understood. We analyzed the effects of altering all anthropogenic emissions' temporal distributions by source group on 2002 summer-long simulations of ozone using the Community Multiscale Air Quality Model (CMAQ) v4.5 and the Carbon Bond IV (CBIV) chemical mechanism with 12 km resolution. We find that when mobile source emissions were made constant over the course of a day, 8-h maximum ozone predictions changed by ±7 parts per billion by volume (ppbv) in many urban areas on days when ozone concentrations greater than 80 ppbv were simulated in the base case. Increasing the temporal variation of point sources resulted in ozone changes of +6 and −6 ppbv, but only for small areas near sources. Changing the daily cycle of mobile source emissions produces substantial changes in simulated ozone, especially in urban areas at night; results suggest that shifting the emissions of NOx from day to night, for example in electric powered vehicles recharged at night, could have beneficial impacts on air quality.  相似文献   

9.
Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the Community Multiscale Air Quality (CMAQ) modeling system for the “weekend ozone effect” to determine if observed changes in ozone due to weekday-to-weekend (WDWE) reductions in precursor emissions can be accurately simulated. The weekend ozone effect offers a unique opportunity for dynamic evaluation, as it is a widely documented phenomenon that has persisted since the 1970s. In many urban areas of the Unites States, higher ozone has been observed on weekends than weekdays, despite dramatically reduced emissions of ozone precursors (nitrogen oxides [NOx] and volatile organic compounds [VOCs]) on weekends. More recent measurements, however, suggest shifts in the spatial extent or reductions in WDWE ozone differences. Using 18 years (1988–2005) of observed and modeled ozone and temperature data across the northeastern United States, we re-examine the long-term trends in the weekend effect and confounding factors that may be complicating the interpretation of this trend and explore whether CMAQ can replicate the temporal features of the observed weekend effect. The amplitudes of the weekly ozone cycle have decreased during the 18-year period in our study domain, but the year-to-year variability in weekend minus weekday (WEWD) ozone amplitudes is quite large. Inter-annual variability in meteorology appears to influence WEWD differences in ozone, as well as WEWD differences in VOC and NOx emissions. Because of the large inter-annual variability, modeling strategies using a single episode lasting a few days or a few episodes in a given year may not capture the WEWD signal that exists over longer time periods. The CMAQ model showed skill in predicting the absolute values of ozone concentrations during the daytime. However, early morning NOx concentrations were underestimated and ozone levels were overestimated. Also, the modeled response of ozone to WEWD differences in emissions was somewhat less than that observed. This study reveals that model performance may be improved by (1) properly estimating mobile source NOx emissions and their temporal distributions, especially for diesel vehicles; (2) reducing the grid cell size in the lowest layer of CMAQ; and, (3) using time-dependent and more realistic boundary conditions for the CMAQ simulations.  相似文献   

10.
Version 4.10s of the comprehensive air-quality model with extensions (CAMx) photochemical grid model has been developed, which includes two options for representing particulate matter (PM) size distribution: (1) a two-section representation that consists of fine (PM2.5) and coarse (PM2.5-10) modes that has no interactions between the sections and assumes all of the secondary PM is fine; and (2) a multisectional representation that divides the PM size distribution into N sections (e.g., N = 10) and simulates the mass transfer between sections because of coagulation, accumulation, evaporation, and other processes. The model was applied to Southern California using the two-section and multisection representation of PM size distribution, and we found that allowing secondary PM to grow into the coarse mode had a substantial effect on PM concentration estimates. CAMx was then applied to the Western United States for the 1996 annual period with a 36-km grid resolution using both the two-section and multisection PM representation. The Community Multiscale Air Quality (CMAQ) and Regional Modeling for Aerosol and Deposition (REMSAD) models were also applied to the 1996 annual period. Similar model performance was exhibited by the four models across the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Clean Air Status and Trends Network monitoring networks. All four of the models exhibited fairly low annual bias for secondary PM sulfate and nitrate but with a winter overestimation and summer underestimation bias. The CAMx multisectional model estimated that coarse mode secondary sulfate and nitrate typically contribute <10% of the total sulfate and nitrate when averaged across the more rural IMPROVE monitoring network.  相似文献   

11.
To improve U.S. air quality, there are many regulations on-the-way (OTW) and on-the-books (OTB), including mobile source California Low Emission Vehicle third generation (LEV III) and federal Tier 3 standards. This study explores the effects of those regulations by using the U.S. Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) model for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030 during a month with typical high ozone concentrations, July. Alterations in pollutant emissions can be due to technological improvements, regulatory amendments, and changes in growth. In order to project emission rates for future years, the impacts of all of these factors were estimated. This study emphasizes the potential light-duty vehicle emission changes by year to predict ozone levels. The results of this study show that most areas have decreases in 8-hr ozone concentrations in the year 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level, which is 75 ppb.

Implications:

To improve U.S. air quality, many regulations are on the way and on the books, including mobile source California LEV III and federal Tier 3 standards. This study explores the effects of those regulations for 8-hr ozone concentrations in the western and eastern United States in the years 2018 and 2030. The results of this study show that most areas have decreases in 8-hr ozone concentrations in 2030, although there are some areas with increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. National Ambient Air Quality Standard level.  相似文献   


12.
The Ozone Source–Receptor Model (OSRM) is a Lagrangian trajectory model developed to describe photochemical ozone production in the UK. The OSRM builds on existing boundary layer trajectory models used previously for assisting the development of UK ozone policy, but has a number of notable differences. A novel feature of the OSRM is a surface conversion module to represent the vertical gradient in ozone arising from chemical loss and deposition to the surface. This has significantly improved the performance of the model, especially in urban areas. In this paper, the modelling system is described and its performance against measured ozone concentrations and metrics and other UK ozone models is discussed. The model has been used to calculate future ozone concentrations in the UK and thus to assess a number of possible control measures developed for the UK Air Quality Strategy.  相似文献   

13.
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.  相似文献   

14.
This study aims to evaluate near surface ozone simulated with the modelling system RegCM3/CAMx against ozone measurements from the EMEP database for the recent decade 1991–2000. The RegCM3/CAMx simulations were performed on a 50 km × 50 km grid over Europe driven either by ERA-40 reanalysis (hereafter referred as ERA simulation) or the global circulation model (GCM) ECHAM5 (hereafter referred as ECHAM simulation). A set of statistical metrics is used for the model evaluation, including temporal correlation coefficient, the ratio of the standard deviations and the bias of simulated versus observed values. Overall, a good agreement is found for both ERA and ECHAM simulations at the majority of the selected EMEP stations in all metrics throughout the year based either on monthly or daily ozone values. Based on these results, it is assessed that the modelling system RegCM3/CAMx is suitable to be used for present and future regional climate-air quality simulations with emphasis on near surface ozone. The ERA simulations reproduce more accurately the observed ozone values in comparison to ECHAM simulations because the meteorology of the ERA experiment is closer to real atmospheric conditions than the GCM based experiment. On a seasonal basis, both ERA and ECHAM simulations exhibit a seasonally dependent bias, with winter and spring ozone values being generally under-estimated by the model and summer and autumn values being slightly overestimated. This seasonally dependent bias is also evident from median and peak midday ozone values. However, the highest observed midday ozone peaks in summer, with values higher than 80 ppbv, could not be captured either by ERA or ECHAM simulations. An analysis of day-time and night-time ERA and ECHAM modelled ozone values shows that CAMx performs better during the day-time.  相似文献   

15.
Particulate matter (PM) less than 2.5 microm in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   

16.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


17.
Abstract

A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

18.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


19.
A sensitivity analysis was conducted to characterize sources of uncertainty in results of a molecular marker source apportionment model of ambient particulate matter using mobile source emissions profiles obtained as part of the Gasoline/Diesel PM Split Study. A chemical mass balance (CMB) model was used to determine source contributions to samples of fine particulate matter (PM2.5) collected over 3 weeks at two sites in the Los Angeles area in July 2001. The ambient samples were composited for organic compound analysis by the day of the week to investigate weekly trends in source contributions. The sensitivity analysis specifically examined the impact of the uncertainty in mobile source emissions profiles on the CMB model results. The key parameter impacting model sensitivity was the source profile for gasoline smoker vehicles. High-emitting gasoline smoker vehicles with visible plumes were seen to be a significant source of PM in the area, but use of different measured profiles for smoker vehicles in the model gave very different results for apportionment of gasoline, diesel, and smoker vehicle tailpipe emissions. In addition, the contributions of gasoline and diesel emissions to total ambient PM varied as a function of the site and the day of the week.  相似文献   

20.
We use ensemble-mean Lagrangian sampling of a 3-D Eulerian air quality model, CMAQ, together with ground-based ambient monitors data from several air monitoring networks and satellite (MODIS) observations to provide source apportionment and regional transport vs. local contributions to sulfate aerosol and PM2.5 concentrations at Baltimore, MD, for summer 2004. The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions on those days when sulfate air pollution is highest in Baltimore, with a principal transport pathway from the Ohio River Valley (ORV) through southern Pennsylvania and Maryland, consistent with earlier studies. Thus, reductions in sulfur emissions from the ORV under the EPA's Clean Air Interstate Rule may be expected to improve particulate air quality in Baltimore during summer. The Lagrangian sampling of CMAQ offers an inexpensive and complimentary approach to traditional methods of source apportionment based on multivariate observational data analysis, and air quality model emissions separation. This study serves as a prototype for the method applied to Baltimore. EPA is establishing a system to allow air quality planners to readily produce and access equivalent results for locations of their choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号