首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha(-1) yr(-1), and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in some watersheds east of the Continental Divide, which reflects low biomass and a short growing season relative to the timing and N load in deposition. Regional upward temporal trends in surface water NO(3)(-) concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future.  相似文献   

2.
Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha−1 and more than doubled to 0.95 kg ha−1 during the summer campaign.  相似文献   

3.
Concern over impacts of atmospheric nitrogen deposition to ecosystems in Rocky Mountain National Park, Colorado, has prompted the National Park Service, the State of Colorado Department of Public Health and Environment, the Environmental Protection Agency, and interested stakeholders to collaborate in the Rocky Mountain National Park Initiative, a process to address these impacts. The development of a nitrogen critical load for park aquatic resources has provided the basis for a deposition goal to achieve resource protection, and parties to the Initiative are now discussing strategies to meet that goal by reducing air pollutant emissions that contribute to nitrogen deposition in the Park. Issues being considered include the types and locations of emissions to be reduced, the timeline for emission reductions, and the impact of emission reductions from programs already in place. These strategies may serve as templates for addressing ecosystem impacts from deposition in other national parks.  相似文献   

4.
Ambient surface ozone was monitored for one year at a series of seven sites along an elevation gradient from 1600 m to 3500 m above sea level (ASL) in Boulder County, Colorado. Spatial variability of ozone, quantified as the root mean squared deviation of hourly ozone per kilometer horizontal separation, decreased with elevation and distance from local sources, validating the assumption that (except at the City of Boulder (BO) site) the results of the study are representative of the Colorado Front Range. The northern hemisphere (NH) tropospheric spring ozone peak was clearly apparent in late April and early May and affected ozone at all elevations. Ozone consistently increased with elevation during winter, with a mean monthly rate of 1.5 ppbv per 100 m elevation. In summer, this monotonic increase in ozone with elevation was not observed; instead mean monthly ozone increased in two steps, by ~15 ppbv between 1610 m and 1940 m ASL and by ~10 ppbv between 3350 m and 3530 m ASL to a maximum of 60 ppbv. The amplitude of the diurnal ozone cycle decreased with increasing elevation. Average summertime diurnal swings in ozone concentration had a magnitude of 29 ppbv at 1610 m ASL, and 7–16 ppbv at the mid-elevation sites. In winter a diurnal cycle was observed only at the BO site, ozone concentrations at the remaining six locations changed on a multi-day timescale, indicating regional background behavior as the primary factor for wintertime ozone. Even the highest elevation site was influenced by transported urban air pollution in summer, indicated by the average 5 ppbv diurnal increase in ozone. Ozone exposure at the mid- to high-elevation sites in many instances approached and exceeded the 8-h National Ambient Air Quality Standard of 75 ppbv. The elevated ozone levels along this transect were interpreted to be caused by the confounding effects of the high elevation of these sites, increased ozone in long-range transported air, and anthropogenic ozone production in air transported from the nearby urban and suburban areas east of the Colorado Front Range Mountains.  相似文献   

5.
Background, Aims and Scope The Rocky Mountain Arsenal (RMA) is a US Army facility located northeast of Denver, Colorado that has been listed on the National Priorities List (NPL). It is currently being re-mediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA). As part of the remediation activities at RMA, indications were found that a source of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) had existed on the RMA. As a result, investigations were undertaken to assess the possible nature and extent of any potential sources of PCDDs and PCDFs on the RMA site. In addition, other studies were conducted that examined PCDD/PCDF contamination in the Denver area. The goal of these studies was to examine nature and extent of PCDD/PCDF contamination both on the RMA as well as in the surrounding Denver area. The intent of this study was to characterize sources of dioxins (PCDDs) and dibenzofurans (PCDFs) at low environmental concentrations which might have originated from diffuse sources in the Denver Colorado area and in particular, the Rocky Mountain Arsenal (RMA) using Principal Component Analysis (PCA). Methods Over 200 soil samples were collected from the RMA and the Denver area. From the RMA, soil was collected as part of three studies that included a (1) random site-wide sampling of the RMA, (2) soils from the Western Tier Parcel (WTP), and (3) soils from Historic Use areas. Denver area soil samples were collected from five different land use categories: Residential, Agricultural, Open Space, Commercial, and Industrial. PCA was conducted on concentrations of 17 2,3,7,8-substuituted PCDD and PCDF congeners in 220 soil samples collected from the RMA and the Denver Front Range region. Results and Discussion PCA demonstrated the presence of possible minor sources of dioxins on the RMA. Current remediation efforts on RMA will result in the removal of these sources. Samples from the RMA were identified by the presence of a congener profile containing higher chlorinated PCDFs while the Denver Front Range areas were characterized by the presence of higher chlorinated PCDD congeners. The presence of a PCDF signature for the RMA samples does not necessarily indicate a major source of these contaminants on-site. Indeed, the relatively diffuse nature of the sample clusters would argue strongly against the presence of a single large source. Instead, the predominance of the PCDF congeners probably indicates the mixed industrial activities that took place on and near the site. Conclusion PCA results indicate that PCDD/PCDF profiles in soils collected from the RMA differed from those collected from the outlying Denver areas but that a major source of these contaminants was not present. Rather, the diffuse nature of sample clusters from the PCA indicated that the congener profile of RMA samples was most likely a result of the mixed industrial activities that historically have taken place on and near the site. PCA also indicated that many of the 'open area' (peripheral site-wide) RMA soils samples did not differ from Denver are reference congener profiles. This finding was also true for samples collected from the WTP that were essentially indistinguishable from Off-RMA reference samples. In addition, total TEQ concentrations in soils collected from WTP were similar to those measured in soils collected from the Denver Front Range areas indicating that lack of a major source of PCDD/PCDF within the WTP zones of the RMA. Recommendation and Outlook Analytical as well as statistical results of the soil congener data indicate that the WTP soils are indistinguishable from soils collected from non-industrial areas in the Denver area. This finding would support the recent 'de-listing' of the WTP from the other RMA areas and its' transfer to other authorities in the Denver area.  相似文献   

6.
Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual δ34S values at individual sites ranged from +4.0 to +8.2‰ and standard deviations ranged from 0.4 to 1.6‰. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 μeq l−1 and pH ranged from 4.82 to 5.70. The range of δ34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between δ34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in δ34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps reflecting the paucity of major point sources of SO2 in the northern part of the network.  相似文献   

7.
The Northern Colorado Front Range (NCFR) has been in exceedance of the ozone National Ambient Air Quality Standard (NAAQS) since 2004, which has led to much debate over the sources of ozone precursors to the region, as this area is home to both the Denver, CO, metropolitan area and the Denver–Julesburg Basin, which has experienced rapid growth of oil and natural gas (O&NG) operations and associated emissions. Several recent studies have reported elevated levels of atmospheric volatile organic compounds (VOCs) as a result of O&NG emissions and the potential for significant ozone production from these emissions, despite implementation of stricter O&NG VOC emissions regulations in 2008. Approximately 88% of 1-hr elevated ozone events (>75 ppbv) occur during June–August, indicating that elevated ozone levels are driven by regional photochemistry. Analyses of surface ozone and wind observations from two sites, namely, South Boulder and the Boulder Atmospheric Observatory, both near Boulder, CO, show a preponderance of elevated ozone events associated with east-to-west airflow from regions with O&NG operations in the N-ESE, and a relatively minor contribution of transport from the Denver Metropolitan area to the SE-S. Transport from upwind areas associated with abundant O&NG operations accounts for on the order of 65% (mean for both sites) of 1-hr averaged elevated ozone levels, while the Denver urban corridor accounts for 9%. These correlations contribute to mounting evidence that air transport from areas with O&NG operation has a significant impact on ozone and air quality in the NCFR.

Implications: This article builds on several previous pieces of research that implied significant contributions from oil and natural gas emissions on ozone production in the Northern Colorado Front Range. By correlating increased ozone events with transport analyses we show that there is a high abundance of transport events with elevated ozone originating from the Denver–Julesburg oil and natural gas basin. These findings will help air quality regulators to better assess contributing sources to ozone production and in directing policies to curb ozone pollution in this region.  相似文献   


8.
Additions of anthropogenic nitrogen (N) compounds constitute one of the major classes of air pollutants of significance to human health and the environment. Reliance on wet deposition measurements alone can lead to considerable underestimates (by 40-60%) of the total (wet + dry) atmospheric N deposition. In addition, wet deposition of N are about 20% of the levels that are lost due to volatilization (primarily ammonia). Nevertheless, in the agricultural sectors of the Mississippi River basins, farm management practices, and recycling of N within cropping systems clearly outweigh the contributions of atmospheric deposition. As opposed to native vegetation and forests, there are no records of the negative effects of atmospheric N deposition on crop yield. Similarly, field studies on the interactions of atmospheric N compounds with the incidence and spread of pathogens does not permit any generalizations. Nitrogen applied as fertilizer affects disease probably more by its effect on the plant growth than by its effects on pathogens. In contrast, atmospheric nitrogen dioxide appears to be a stimulant of aphid performance. Under conditions of heavy weed infestation, N fertilization stimulates weed growth and competitiveness, rather than crop yield.  相似文献   

9.
Emissions of ammonia have received increasing attention recently, following concern about the environmental consequences, especially in The Netherlands where levels are high due to intensive livestock farming. Direct local effects and more widespread consequences for a range of ecosystems have been attributed to ammonia emissions. As the most prevalent alkaline gas in the atmosphere, ammonia interacts with acidic species, changing their characteristics, chemical and physical behaviour, and enhancing their potential for acidification of soils. Ammonia also forms an important component of the nitrogen cycle and of nitrogen deposition. In the UK, as in many other European countries, there has been a considerable increase in the emission of ammonia within the last 30 years, estimated at about 50%. This results mainly from increases in agricultural production based on the steadily rising number of livestock and increasing fertilizer consumption. This paper discusses the various sources to emissions of ammonia from agricultural sources in the United Kingdom, and some of the uncertainties involved in constructing a national emissions inventory.  相似文献   

10.
Over the past 50 years, Lake Tahoe, an alpine lake located in the Sierra Nevada mountains on the border between California and Nevada, has seen a decline in water clarity. With significant urbanization within its borders and major urban areas 130 km upwind of the prevailing synoptic airflow, it is believed the Lake Tahoe Basin is receiving substantial nitrogen (N) input via atmospheric deposition during summer and fall. We present preliminary inferential flux estimates to both lake surface and forest canopy based on empirical measurements of ambient nitric acid (HNO3), ammonia (NH3), and ammonium nitrate (NH4NO3) concentrations, in an effort to identify the major contributors to and ranges of atmospheric dry N deposition to the Lake Tahoe Basin. Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha-1 for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha-1 year-1. These preliminary results suggest that dry deposition of HNO3 is the major source of atmospheric N deposition for the Lake Tahoe Basin, and that overall N deposition is similar in magnitude to deposition reported for sites exposed to moderate N pollution in the southern California mountains.  相似文献   

11.
The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.  相似文献   

12.
This paper summarises the results of the EU funded MEAD project, an interdisciplinary study of the effects of atmospheric nitrogen deposition on the Kattegat Sea between Denmark and Sweden. The study considers emissions of reactive nitrogen gases, their transport, transformations, deposition and effects on algal growth together with management options to reduce these effects. We conclude that atmospheric deposition is an important source of fixed nitrogen to the region particularly in summer, when nitrogen is the limiting nutrient for phytoplankton growth, and contributes to the overall eutrophication pressures in this region. However, we also conclude that it is unlikely that atmospheric deposition can, on its own, induce algal blooms in this region. A reduction of atmospheric nitrogen loads to this region will require strategies to reduce emissions of ammonia from local agriculture and Europe wide reductions in nitrous oxide emissions.  相似文献   

13.
This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry).  相似文献   

14.
Acidic deposition is comprised of sulfuric and nitric acids and ammonium derived from atmospheric emissions of sulfur dioxide, nitrogen oxides, and ammonia, respectively. Acidic deposition has altered soil through depletion of labile pools of nutrient cations (i.e. calcium, magnesium), accumulation of sulfur and nitrogen, and the mobilization of elevated concentrations of inorganic monomeric aluminum to soil solutions in acid-sensitive areas. Acidic deposition leaches essential calcium from needles of red spruce, making this species more susceptible to freezing injury. Mortality among sugar maples appears to result from deficiencies of nutrient cations, coupled with other stresses such as insect defoliation or drought. Acidic deposition has impaired surface water quality in the Adirondack and Catskill regions of New York by lowering pH levels, decreasing acid-neutralizing capacity, and increasing aluminum concentrations. Acidification has reduced the diversity and abundance of aquatic species in lakes and streams. There are also linkages between acidic deposition and fish mercury contamination and eutrophication of estuaries.  相似文献   

15.
A network of eight monitoring stations was established to study the atmospheric nitrogen concentration and deposition in the State of Connecticut. The stations were classified into urban, rural, coastal and inland categories to represent the geographical location and land use characteristics surrounding the monitoring sites. Nitrogen species including nitrate, ammonium, nitric acid vapor and organic nitrogen in the air and precipitation were collected, analyzed and used to infer nitrogen concentrations and dry and wet deposition flux densities for the sampling period from 1997 through 1999, with independently collected meteorological data. Statistical analyses were conducted to evaluate the spatial variations of atmospheric concentration and deposition fluxes of total nitrogen in Connecticut. A slightly higher atmospheric concentration of total nitrogen was observed along the Connecticut coastline of Long Island Sound compared to inland areas, while the differences of nitrogen deposition fluxes were insignificant between coastal and inland sites. The land use characteristics surrounding the monitoring sites had profound effects on the atmospheric nitrogen concentration and dry deposition flux. The ambient nitrogen concentration over the four urban sites was averaged 38.9% higher than that over the rural sites, resulting a 58.0% higher dry deposition flux in these sites compared to their rural counterparts. The local industrial activities and traffic emissions of nitrogen at urban areas had significant effects on the spatial distribution of atmospheric nitrogen concentration and dry deposition flux in the State. Wet and total deposition fluxes appeared to be invariant between the monitoring sites, except for high flux densities measured at Old Greenwich, a monitoring station near to and downwind of the New York and New Jersey industrial complexes.  相似文献   

16.
Micrometeorological methods were applied to measure fluxes of atmospheric ammonia (NH3) to moorlands. Measurements were made in a wide variety of surface conditions and included both Calluna vulgaris (L.) Hull and Eriophorum vaginatum L. dominated sites. NH3 was found to deposit rapidly to all the sites investigated, providing large deposition velocities (Vd, typically 10-40 mm s(-1)) and usually minimal surface resistances (rc). A small number of measurements were made in frozen conditions and suggest a possible exception to this pattern with mean rc of 50-200 s m(-1). The effect of vegetation drying was also investigated and a possible increase in rc observed, though this was small (< 10 s m(-1)). The results are interpreted in terms of the processes controlling exchange; it is shown that NH3 deposition is predominantly to the leaf surfaces and that the net NH3 compensation point approaches zero. Annual estimates show that dry deposition of NH3 is a major source of atmospheric nitrogen to moorland ecosystems. For two typical UK sites subject to background air concentrations, NH3 dry deposition is of similar magnitude to equivalent NH4+ inputs in wet deposition. In the vicinity of emission sources, NH3 dry deposition is expected to dominate inputs of atmospheric nitrogen.  相似文献   

17.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   

18.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

19.
Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.  相似文献   

20.
太湖北部藻类生长旺盛期大气氮、磷沉降特征   总被引:10,自引:0,他引:10  
按照<大气降水样品的采集与保存标准>(GB/T 153580.2-92)收集大气N、P沉降物和降水量,并测定了2007年5~11月太湖北部梅梁湾藻类生长旺盛期间大气TN、TP的干、湿沉降通量.结果表明,太湖北部梅粱湾大气TN月湿沉降通量和月总沉降通量的变化趋势均呈双峰型特征,与当地梅雨和台风侵袭时的降水量呈明显正相关,并且TN的月湿沉降通量高于月干沉降适量,但降水量最少的11月则相反;大气TP月干、月湿沉降通量呈相互交替的变化趋势.大气N沉降物中主要以溶解性氮(TDN)为主,平均约占91.4%;而P沉降物中溶解性磷(TDP)占的比例相对较低,平均约为65.1%.经测定,2007年太湖北部梅梁湾TN和TP的年沉降通量分别为2 976、84.0 kg/km2,相比2002年7月至2003年6月分别下降34.4%和78.7%;2007年太湖北部梅粱湾大气TN的年沉降量高达6 958 t,远超过太湖湖泊生态系统理论允许的TN年沉降量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号