首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
针对污水处理系统混合菌形成的生物膜,比较了两种传统抗菌剂(银离子和氯)及3种小分子物质,包括双(3-氨基丙基)胺、(Z-)-4-溴-5-(溴乙烯)-2(5H)-呋喃酮(BBF)和香兰素对生物膜形成的抑制效应.结果表明,本研究所选用的传统抗菌剂中,0.05~10 mg·L-1Ag+对生物膜形成的抑制率为23%~70%,0.01~20 mg·L-1氯对生物膜形成的抑制率为23%~53%.而在3种小分子物质中,500~2000μmol·L-1双(3-氨基丙基)胺对生物膜形成的抑制率为16%~68%,0.1~200 mg·L-1香兰素对生物膜形成的抑制率为20%~37%,1~20 mg·L-1BBF对生物膜形成的抑制率为11%~18%.高浓度的Ag+(0.1~10 mg·L-1)会显著抑制混合菌的生长,且浓度越高,抑制效果越显著.1000μmol·L-1以下的双(3-氨基丙基)胺基本不会抑制混合菌的生长,但高浓度(2000μmol·L-1)的双(3-氨基丙基)胺会显著抑制混合菌的生长.  相似文献   

2.
以低C/N值生活污水为处理对象,重点考察了以厌氧/缺氧(A/A)运行的ABR耦合好氧MBR系统启动过程中脱氮除磷特性及系统长期运行的稳定性.结果表明,控制ABR容积负荷(VLR)为0. 8 kg·(m3·d)-1,污泥回流比为80%,硝化液回流比从150%逐步提升稳定至300%,反硝化除磷功能区污泥停留时间(sludge retention time,SRT)为25 d,MBR溶解氧(DO)为1~2 mg·L~(-1),温度为30℃±2℃,于46 d成功富集了反硝化聚磷菌(denitrifying phosphorus bacteria,DPBs),净释磷量为20. 56 mg·L~(-1),净吸磷量达到27. 74 mg·L~(-1),批次实验表明约84. 8%的聚磷菌(PAOs)能够利用NO-3-N作为电子受体进行反硝化除磷.启动成功后稳定运行50 d,对COD、NH+4-N、TN和PO_4~(3-)-P的平均去除率分别为91. 8%、99. 0%、71. 5%和94. 2%,系统缺氧反硝化除磷去除1 mg·L~(-1)的PO_4~(3-)-P,同步消耗约0. 83 mg·L~(-1)的NO-3-N,满足同步脱氮除磷的要求.  相似文献   

3.
王嗣禹  刘灵婕  王芬  季民 《环境科学》2019,40(12):5430-5437
溶解氧(DO)是控制短程硝化的重要因素,其对不同的生物处理系统有不同的影响.本文研究了DO对悬浮污泥及生物膜系统短程硝化效果的影响,并利用高通量测序技术分析了微生物群落结构变化.结果表明,对于悬浮污泥系统,当DO从0. 25 mg·L~(-1)增加到0. 50 mg·L~(-1)时,氨氧化速率(AOR)从18. 08 mg·(L·h)-1升高至30. 27 mg·(L·h)-1;当曝气继续增加,DO达到3. 00 mg·L~(-1),仅运行14 d,进水氨氮(NH_4+-N)基本全部转化为硝酸盐氮(NO_3--N),且通过降低DO来恢复短程硝化效果需77 d,恢复过程缓慢.对于生物膜系统,DO由2. 50 mg·L~(-1)上升到3. 00 mg·L~(-1)的过程中,AOR稳定在11. 50~13. 50mg·(L·h)-1,当DO为3. 00 mg·L~(-1)时,80 d的运行结果显示,出水中氨氮与亚硝酸盐氮(NO_2--N)的比值可长期稳定在1∶1. 2~1∶1. 7,基本满足ANAMMOX工艺进水要求.微生物群落结构分析结果表明,悬浮污泥系统在DO从0. 25 mg·L~(-1)增加到3. 00 mg·L~(-1)的过程中,主要氨氧化菌(AOB)菌属Nitrosomonas丰度由10. 07%增长至18. 64%.当DO为3. 00 mg·L~(-1)时,生物膜系统中Nitrosomonas菌属丰度与悬浮污泥系统相近为20. 43%,且生物膜系统富集了0. 78%的ANAMMOX菌属Candidatus_Kuenenia.综上,生物膜系统内DO的变化受曝气量影响较小,短程硝化效果受DO影响较小,短程硝化速率更稳定,更适合作为ANAMMOX脱氮工艺的前处理单元.  相似文献   

4.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

5.
程继辉  吴鹏  程朝阳  沈耀良 《环境科学》2015,36(12):4539-4545
挥发性脂肪酸(VFA)是反硝化除磷过程可以利用的优质碳源,为此本研究结合厌氧折流板反应器(ABR)微生物相分离和膜生物反应器(MBR)出水水质优良的特性,构建了CAMBR复合工艺,并通过优化ABR水力停留时间(HRT)等运行条件以提供优质碳源,实现高效反硝化除磷.研究表明,当ABR的HRT为4.8 h时,可获得充足的VFA作为优质碳源,并实现消耗VFA的量为56.1 mg·L~(-1)的同时获得10.43 mg·L~(-1)的释磷,即释放1 mg磷需要的VFA量为5.38 mg,同时实现12.35 mg·L~(-1)的吸磷,而MBR池的吸磷为1.33 mg·L~(-1).短程硝化除磷过程中,缺氧消耗1 mg PO_4~(3-)-P需要0.62 mg的NO-x-N,吸收1 mg PO_4~(3-)-P所需NO_2~--N的量为1.67~2.04 mg.系统出水水质稳定,COD、TN和溶解性PO_4~(3-)-P的平均去除率分别为91%、84%和93%,出水平均浓度分别为30、7.15和0.55 mg·L~(-1),表明CAMBR复合工艺生在处理生活污水过程中可获得稳定高效的反硝化除磷效果.  相似文献   

6.
为了解同步硝化内源反硝化系统(SNEDPR)脱氮除磷性能,采用延时厌氧(180 min)/低氧(溶解氧0. 5~2. 0 mg·L~(-1))运行的SBR反应器,以人工配置的模拟废水为处理对象,先采用恒定进水C/N(为10),以实现SNEDPR的启动和聚磷菌(PAOs)的富集培养,再调控进水C/N值(分别为10、7. 5、5和2. 5),考察不同C/N对系统的脱氮除磷性能的影响.结果表明,当进水C/N为10,可实现SNEDPR的启动与深度脱氮除磷,出水PO3-4-P和总氮(TN)浓度分别平均为0. 1 mg·L~(-1)和8. 1mg·L~(-1),PO3-4-P去除率、TN去除率和SNED率平均值分别为99. 79%、89. 38%和58. 0%.当进水C/N由5提高至10时,系统维持良好的脱氮除磷性能,释磷量(PRA)和SNED率分别由16. 0 mg·L~(-1)和48. 0%提高至24. 4 mg·L~(-1)和69. 2%;当C/N为10时,TN和PO3-4-P去除率最高达94. 5%和100%;当C/N为2. 5时,系统失去脱氮、除磷性能,PRA和SNED率仅为1. 36 mg·L~(-1)和10%.在系统稳定运行阶段(C/N为10、7. 5和5),SNED率达85. 9%,出水NH_4~+-N、NO-x-N和PO3-4-P浓度平均为0、8. 1和0. 1 mg·L~(-1).  相似文献   

7.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

8.
双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量   总被引:1,自引:1,他引:1  
为贯彻落实《大气污染防治行动计划》,环境保护部指导各地开展大气污染源排放清单编制工作,其中包括固定源PM_(10)和PM_(2.5)的排放清单.但目前国内尚无固定源PM_(10)和PM_(2.5)标准采样方法.本研究提出了适合我国固定源PM_(10)和PM_(2.5)测量的双级虚拟撞击采样方法,开发了相应的分级采样系统,并用该方法对各类固定源进行了现场测试.测试结果表明,所测试的煤粉炉电厂的烟囱入口PM_(2.5)质量浓度为(0.93±0.03)mg·m~(-3),PM_(10)质量浓度为(1.13±0.11)mg·m~(-3).所测试的垃圾焚烧电厂的烟囱排放口PM_(2.5)质量浓度为(3.3±0.65)mg·m~(-3),PM_(10)质量浓度为(6.9±0.86)mg·m~(-3).所测试的大型循环流化床发电厂的烟囱排放口PM_(2.5)质量浓度为(0.59±0.04)mg·m~(-3),PM_(10)质量浓度为(1.12±0.16)mg·m~(-3).所测试的钢铁转炉的烟囱排放口PM_(2.5)质量浓度为(0.15±0.04)mg·m~(-3),PM_(10)质量浓度为(0.43±0.15)mg·m~(-3).  相似文献   

9.
臭氧-混凝交互作用对水体有机物的影响   总被引:1,自引:1,他引:0  
研究臭氧在纯水和混凝剂[Al_2(SO_4)_3]溶液中残余浓度的变化;采用差异吸收分析(differential absorbance,DA)、三维荧光(three dimensional fluorescence excitation-emission matrix spectroscopy,3D-EEM)和气相色谱(gas chromatograph,GC)、总有机碳分析(total organic carbon analyser,TOC)等研究水体有机物(富里酸)光谱特征、有机物和消毒副产物(DBPs)生成量在预臭氧、预臭氧-混凝(POC)以及臭氧-混凝联用(OC)后的差异;研究臭氧和混凝联合作用对有机物氧化程度及其对DBPs生成的影响.结果表明POC与OC作用存在明显差别,臭氧与混凝剂Al_2(SO_4)_3存在交互作用.交互作用主要体现在:(1)臭氧-混凝联用时臭氧降解速率加快;且臭氧降解中自由基产量相对增加.当臭氧投量2 mg·L~(-1),Al3+含量为1 mg·L~(-1)、3 mg·L~(-1)时,自由基捕获量比单独臭氧分别高15.2%和23.9%.(2)联用和预臭氧-混凝对有机物反应的差异,体现在OC有机物去除率低于POC,二者对有机物的反应途径不同;进而导致有机物与消毒剂反应的差异以及DBPs生成的差异.联用对DOC的去除能力明显强于单独臭氧和单独混凝,但弱于预氧化-混凝.当O3浓度为1 mg·L~(-1)、Al3+1 mg·L~(-1)时POC处理后二氯乙酸生成势(DCAAFP)和三氯乙酸生成势(TCAAFP)分别为47μg·L~(-1)和20.5μg·L~(-1),三氯甲烷生成势(CFFP)为97.8μg·L~(-1),较原水分别降低51%、64.6%和41.5%;而相应臭氧-混凝处理后DCAAFP和TCAAFP分别为48.4μg·L~(-1)和21.4μg·L~(-1),CFFP为117.3μg·L~(-1);较原水分别降低49.6%、63%和29.5%.同等臭氧投量下,增加混凝剂的剂量,POC和OC处理效果的差异进一步扩大.为保证用水安全和处理效率,臭氧和混凝联用时对臭氧的浓度、投加位置、混凝剂的种类等都需要进一步的研究论证,慎重选择.  相似文献   

10.
为确定规模化笼养肉鸡生产过程NH3、N2O、CH4和CO2的排放因子,并探讨不同生长阶段排放特征,本研究选择山东某商业化肉鸡养殖场,利用INNOVA 1312多气体分析仪-连续采样测试系统和风机风量现场测定系统(FANS),对肉鸡舍NH3、N2O、CH4和CO2的排放进行为期42 d的测定,确定了肉鸡整个生产过程气体的平均排放因子和累积排放因子.结果表明,整个肉鸡生产过程中NH3排放因子呈现出先升高后降低的趋势,变化范围在8.5~342.1 mg·(d·bird)-1,平均为137.9mg·(d·bird)-1[48.6 g·(d.AU)-1],CH4和CO2排放因子随着日龄的增加而增大,CH4排放因子的变化范围在19.5~351.9mg·(d·bird)-1之间,平均为154.5 mg·(d·bird)-1[54.4 g·(d.AU)-1],CO2的排放因子在2.2~152.9 g·(d·bird)-1之间变化,平均为65.9 g·(d·bird)-1[23.2 kg·(d.AU)-1],整个生产过程没有监测到N2O的排放;肉鸡的NH3累计排放因子为(5.65±1.02)g·(bird·life cycle)-1,第1阶段(0~17 d)、第2阶段(18~27 d)和第3生长阶段(28~42 d)氨气排放占总排放的比例分别为33.6%、36.4%和29.9%,第2阶段的NH3累计排放因子显著高于第1和第3生长阶段;CH4和CO2的累计排放因子分别为(6.30±0.16)g·(bird·life cycle)-1和(2.68±0.18)kg·(bird·life cycle)-1,第3阶段的CH4和CO2累计排放因子显著大于1和2阶段,占总排放量的50%以上.研究结果为控制气体排放提供了数据基础.  相似文献   

11.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

12.
污水处理厂出水有机磷污染特征及强化去除   总被引:1,自引:0,他引:1  
王小东  王子文  陈明飞  王燕  王硕  李激 《环境科学》2019,40(6):2800-2806
针对污水处理厂(wastewater treatment plant,WWTP)有机磷(organic phosphorus,OP)污染现状,采用多种方法表征出水OP污染特性,并开展强化去除研究.结果表明,TP、PO_4~(3-)-P、聚磷酸盐(Poly-P)和OP的出水平均浓度分别为:0. 62、0. 22、0. 03和0. 37 mg·L~(-1),OP占比达59. 7%.工艺全流程分析结果表明,PO_4~(3-)-P、Poly-P和OP在进、出水中的占比依次是54. 4%、6. 3%、39. 3%和16. 9%、14. 5%、68. 6%. OP和溶解性有机碳(dissolved organic carbon,DOC)存在正相关性,相关系数为0. 65;亲水性和疏水性OP的平均浓度分别是0. 12 mg·L~(-1)和0. 31 mg·L~(-1),疏水性OP的C/P比亲水性低,说明疏水性OP生物利用度(bioavailability,BA)更高,结果表明OP的BA约为20. 0%,OP以难生物利用组分为主.强化去除研究表明活性焦最佳投加量为20 g·L~(-1),去除率为32. 6%; O_3最佳投加量为30 mg·L~(-1),去除率高达79. 1%,高级氧化技术较物理吸附更适合作为深度处理方式.  相似文献   

13.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

14.
许静怡  杜俊  杨一烽  吕锋  夏四清 《环境科学》2018,39(8):3767-3774
分别采用SBR反应器和MBR反应器驯化培养亚硝化污泥和厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)污泥,并通过微生物包埋技术将两类污泥分别包埋,构建亚硝化-厌氧氨氧化(partial nitrification-ANAMMOX,PN/A)双菌层系统.短期实验证明该系统中亚硝化菌(ammonia oxidizing bacteria,AOB)和ANAMMOX菌在不同阶段分别起主导作用,维持系统的酸碱平衡,并实现NH+4-N的高效去除(98.8%).长期实验表明,在溶解氧受限时,PN/A双菌层系统能够有效提高系统对溶解氧的利用效率,并增强系统的稳定性和脱氮效能.在溶解氧为1.0 mg·L~(-1),进水NH+4-N质量浓度分别为200 mg·L~(-1)和400 mg·L~(-1)时,对照组脱氮效率仅为58.1%和61.4%,而PN/A双菌层系统脱氮效率均稳定在80%左右;溶解氧为3.0mg·L~(-1),进水NH+4-N质量浓度为400 mg·L~(-1)时,PN/A双菌层系统总氮去除率达87.9%,总氮积累负荷(NLR)为0.4kg·(m3·d)-1,总氮去除负荷(NRR)为12.8 mg·(g·h)-1.  相似文献   

15.
生物膜CANON反应器性能的优化:从FBBR到MBBR   总被引:1,自引:2,他引:1  
付昆明  李慧  周厚田  仇付国 《环境科学》2018,39(5):2256-2264
控制温度为30℃±1℃,在移动床式生物膜反应器(MBBR)采用以改性聚乙烯为填料的全程自养脱氮(CANON)工艺,以无机高NH_4~+-N(约400 mg·L~(-1))人工模拟废水为连续进水,研究MBBR对生物膜CANON工艺脱氮性能的优化.试验控制pH在7.8左右,HRT为6 h,填料填充率为35%,经过一个月调试与培养,NH_4~+-N及TN平均去除率达到74.28%和87.93%,最高分别可达84.68%和98.82%,此时ΔNO-3/ΔTN为0.12,接近理论值0.127,由此判断CANON污泥在MBBR工艺中逐渐适应并得以稳定运行.同时,对比采用相同进水基质及控制条件的固定床式生物膜反应器(FBBR),计算发现MBBR与FBBR工艺NH_4~+-N去除率、TN去除率及去除负荷3组均方差分别为:8.31%和14.06%,7.09%和11.79%,0.17kg·(m3·d)-1和0.27 kg·(m3·d)~(-1),前者均低于后者;并且,在MBBR与FBBR的DO平均浓度分别为1.96 mg·L~(-1)和3.09mg·L~(-1)的情况下,MBBR与FBBR中每升氮去除负荷分别为0.53 kg·(m~3·d)~(-1)和0.37 kg·(m~3·d)~(-1).因此,(1)相比FBBR,MBBR具有更加稳定的脱氮性能;(2)相比FBBR,MBBR中每升填料中的微生物具有更高的O2利用效率及总氮去除负荷.  相似文献   

16.
容积负荷对ABR-MBR工艺反硝化除磷性能的影响   总被引:2,自引:2,他引:0  
吕亮  尤雯  韦佳敏  吴鹏  沈耀良 《环境科学》2018,39(1):239-246
采用连续流ABR-MBR组合工艺处理生活污水,研究不同容积负荷(volume loading rate,VLR)对该工艺反硝化除磷性能的影响,获得最佳工艺参数.试验考察ABR进水容积负荷(以COD计,下同)分别为0.76、1.01、1.51和2.27 kg·(m~3·d)~(-1)时系统去碳脱氮除磷的性能,并在各ABR容积负荷条件下考察MBR容积负荷对MBR反应器硝化性能的影响.结果表明,在ABR进水容积负荷为1.51 kg·(m~3·d)~(-1)的条件下,系统A2隔室COD去除量最大,并在MBR容积负荷为0.462 kg·(m~3·d)~(-1)时,MBR反应器中实现了短程硝化,系统NH_4~+-N和TN去除率分别达到90%和72%以上,厌氧释磷量为7.41 mg·L~(-1),缺氧吸磷量达到15.42 mg·L~(-1),出水PO_4~(3-)-P浓度低于0.5 mg·L~(-1),这表明短程硝化更有利于强化ABR-MBR系统的反硝化除磷性能.  相似文献   

17.
以低C/N城市污水为处理对象,采用延时厌氧(180min)/好氧运行的SBR反应器,通过调控曝气量[单位体积的反应器在单位时间内通过的气体的体积,单位为L·(min·L)-1。由0.125L·(min·L)-1逐渐降低至0.025L·(min·L)-1]和好氧时间(由3h逐渐延长至6h),考察了SPNDPR系统的深度脱氮除磷性能。结果表明,当曝气量为0.025 L·(min·L)-1、好氧时间为6h时,SPNDPR系统出水NH4+-N、NO2--N、NO3--N和PO43--P浓度分别为0、8.62、0.06和0.03mg·L-1;出水TN浓度约为9.22mg·L-1,TN去除率高达87.08%。当曝气量分别由0.125 L·(min·L)-1降至0.100 L·(min·L)-1和由0.100L·(min·L)-1降至0.075 L·(min·L)-1时,系统硝化速率均能恢复并稳定维持在0.16mg·(L·min)-1左右。但曝气量继续降至0.050L·(min·L)-1和0.025L·(min·L)-1后,硝化速率分别降至0.09 mg·(L·min)-1和0.06 mg·(L·min)-1左右。随着曝气量的降低[由0.125 L·(min·L)-1依次降至0.100、0.075、0.050、0.025L·(min·L)-1]和好氧时间的延长(由3h延长至6h),SPND脱氮性能逐渐增强,SND率由19.57%升高至72.11%,TN去除率逐渐升高(由62.82%升高至87.08%)。降低曝气量和延长好氧时间后的SPNDPR系统,强化了厌氧段内碳源贮存与好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化等过程的进行,实现了低C/N城市污水的深度脱氮除磷。  相似文献   

18.
超低排放燃煤电站三氧化硫的迁移和排放特征   总被引:3,自引:0,他引:3  
赵毅  韩立鹏 《环境科学学报》2019,39(11):3702-3708
采用美国环保署(USEPA)method 8推荐的方法,对典型超低排放燃煤电站满负荷工况下的燃煤、烟气、飞灰、渣进行三氧化硫监测.实验结果表明:燃煤电站超低排放环保设备对三氧化硫的总脱除率为71.86%,大气三氧化硫排放浓度为1.5 mg·m~(-3)(气体体积为标准大气压下的体积,下同).选择性脱硝催化剂(SCR)前烟气中三氧化硫生成量为二氧化硫的0.46%,在SCR催化剂SO_2/SO_3的转化率为0.58%,空气预热器内气态三氧化硫浓度显著降低.低温电除尘(LLT-ESP)内三氧化硫与飞灰结合得到脱除,LLT-ESP细灰中三氧化硫含量为粗灰的1.38倍.湿法脱硫系统(WFGD)对三氧化硫的脱除率为48.45%.超低排放燃煤电站大气三氧化硫排放因子EF_煤、EF_电分别为17.13 mg·kg~(-1)、4.41 mg·kW~(-1)·h~(-1).估算2018年我国燃煤电站三氧化硫大气排放总量约为3.99万t·a~(-1).  相似文献   

19.
采用中试ASBR反应器(530 L),以逐步提高Cl~-浓度的方式考察了厌氧氨氧化菌(An AOB)处理高盐废水的脱氮特性.结果表明,采用逐步盐度驯化的方式,An AOB可适应高盐度(Cl~-浓度10 000 mg·L~(-1))环境进行高效脱氮(TN去除率高达92. 3%).其中,在Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)两个梯度内,反应器脱氮性能受到了较大影响,但随着驯化过程的持续进行可逐步恢复.修正的Boltzmann模型能较为准确地拟合An AOB受到不同盐度抑制后的活性恢复过程,相关系数R~2均在0. 96以上.得到的Cl~-浓度6 000 mg·L~(-1)和10 000 mg·L~(-1)时的恢复中间值tc分别为28. 765 d和44. 495 d,NRRmax分别为0. 145 kg·(m~3·d)~(-1)和0. 212 kg·(m~3·d)~(-1),NRRmin分别为0. 021 kg·(m~3·d)~(-1)和0. 085 kg·(m~3·d)~(-1).高盐度驯化后,厌氧氨氧化菌仍主要为Candidatus Brocadia和Candidatus Jettenia(其丰度分别是14. 76%和2. 7%),且污泥颗粒化程度和污泥密度均有不同程度的提高,污泥呈红褐色.  相似文献   

20.
同步脱氮除磷颗粒污泥硝化反硝化特性试验研究   总被引:4,自引:4,他引:0  
在厌氧/好氧交替运行的SBR反应器中,以成熟的脱氮除磷颗粒污泥为研究对象,对其硝化及反硝化特性进行研究.结果表明,静态试验中颗粒污泥的最大硝化速率为14.13 mg·(g·h)-1,最大反硝化速率为34.89 mg·(g·h)-1,最大缺氧吸磷反硝化速率为13.11 mg·(g·h)-1,污泥具有较好的硝化、反硝化性能;反应器中污泥最大硝化速率为4.60 mg·(g·h)-1,最大反硝化速率为1.43 mg·(g·h)-1;通过N的物料平衡得到,同步硝化反硝化反应去除N约为232.5 mg·d-1,占N去除总量的54.3%;另外,颗粒污泥对P和N的去除率分别在95%和90%左右,反应器具有较好的同步脱氮除磷效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号