首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2021年4~10月在镇江市四个不同区域站点采用苏玛罐和DNPH小柱采集VOCs样品,并分析69种VOCs (56种PAMs物质和13中醛酮类物质)的组分特征和非甲烷总烃特征,应用比值法对VOCs其来源特征进行判断。结果显示,四个站点PAMS组分的浓度值25.78ppbv~36.71ppbv,醛酮浓度47.48ppbv~70.93ppbv,非甲烷总烃浓度为245.3ppbv~260.5ppbv。利用最大增量反应活性(MIR)计算出了各类VOCs的臭氧生成潜势(OFP),各组分对臭氧生成潜势贡献排名分别为OVOCs,芳香烃,烯烃,烷烃,炔烃分别占比75.08%、10.06%、8.86%,5.54%和0.45%。对VOCs的来源利用PMF受体模型进行解析研究发现各个站点VOCs来源略有不同,主要VOCs污染来源为工业源(24.9%),交通源(32.0%),溶剂涂料(23.5%),油气挥发(18.0%)和植物源(1.6%)等。  相似文献   

2.
采用罐采样-冷阱富集气相色谱质谱联用技术测定空气中的VOCs,优化了升温程序、进样体积等分析条件。实验结果表明,39种目标化合物在0~10.0ppbv范围内线性良好,检出限范围为0.038~0.460ppbv,即0.15μg/m3~3.09μg/m3,标准气体平行测定的相对标准偏差为1.0%~5.5%。应用于环境等空气样品的测定,操作分析简便,目标化合物的分离效果较好。  相似文献   

3.
基于我国居民生活水平的提高,家具产业蓬勃发展,但也带来了环境空气污染问题,本研究针对六安市叶集家具产业园区VOCs进行定量分析,结果如下:57种PAMS在六安市叶集家具产业园区广泛检出,且大部分化合物100%检出,浓度总和10.7-77.1ppbv,其算术均值为25.5±19.5 ppbv;13种醛酮类化合物仅甲醛、乙醛和丙酮在所有样品中均有检出,总浓度为6.13±3.21 ppbv,其中烷烃类化合物的贡献最大;园区VOCs受到当地排放较为明显,主要是当地工业排放和溶剂的使用;下风向处醛酮类VOCs对OFP的贡献最大,其次为烷烃,苯系物贡献最小,应加强对醛酮类VOCs的管控。  相似文献   

4.
通过苏玛罐采样和GC-MS/FID分析系统,测定了山东地区典型胶合板制造企业的VOCs排放特征.结果表明,烷烃(13.81%~39.16%)、含氧VOCs(5.68%~36.06%)和芳香烃(3.58%~48.12%)是热压和涂胶工艺主要排放成分,废气排口以含氧VOCs(6.49%~83.88%)排放为主,不同工艺环节的特征VOCs组分各有不同;烯炔烃(27.12%~39.38%)和芳香烃(32.47%~45.63%)是热压工艺和涂胶工艺的高OFP组分,废气排口则以含氧VOCs(52.82%)对O3生成贡献最大;基于SOAP评估,各环节均以芳香烃类化合物(97.08%~98.03%)为主要活性组分;测得山东地区胶合板制造行业VOCs排放因子为0.89g VOCs/m3胶合板.  相似文献   

5.
北京市典型溶剂使用企业VOCs排放成分特征   总被引:25,自引:0,他引:25  
通过罐采样-GC-MS/FID采集及分析系统,测定了北京市工业区内典型溶剂使用企业挥发性有机物(VOCs)的排放成分.结果表明:在汽车喷涂企业中,芳香烃(22%~55%)和烷烃(13%~44%)是重要的VOCs排放组分,印刷企业排放的主要组分为烷烃(43%~71%)和含氧VOCs(17%~19%),电子光刻企业排放的特征组分是丙酮(10%~18%),但不同电子光刻企业VOCs其它组分比例相差较大;企业中采用的VOCs处理装置对VOCs排放组成有重要影响;与已有研究的源谱比较,印刷行业源谱较相似,主要以烷烃为主,也有部分芳香烃.汽车喷涂行业的源谱有很大变化,可能是由于汽车涂料成分改变而造成.  相似文献   

6.
Zhengzhou is one of the most haze-polluted cities in Central China with high organic carbon emission, which accounts for 15%-20% of particulate matter (PM2.5) in winter and causes significantly adverse health effects. Volatile organic compounds (VOCs) are the precursors of secondary PM2.5 and O3 formation. An investigation of characteristics, sources and health risks assessment of VOCs was carried out at the urban area of Zhengzhou from 1st to 31st December, 2019. The mean concentrations of total detected VOCs were 48.8 ± 23.0 ppbv. Alkanes (22.0 ± 10.4 ppbv), halocarbons (8.1 ± 3.9 ppbv) and aromatics (6.5 ± 3.9 ppbv) were the predominant VOC species, followed by alkenes (5.1 ± 3.3 ppbv), oxygenated VOCs (3.6 ± 1.8 ppbv), alkyne (3.5 ± 1.9, ppbv) and sulfide (0.5 ± 0.9 ppbv). The Positive Matrix Factorization model was used to identify and apportion VOCs sources. Five major sources of VOCs were identified as vehicular exhaust, industrial processes, combustion, fuel evaporation, and solvent use. The carcinogenic and non-carcinogenic risk values of species were calculated. The carcinogenic and non-carcinogenic risks of almost all air toxics increased during haze days. The total non-carcinogenic risks exceeded the acceptable ranges. Most VOC species posed no non-carcinogenic risk during three haze events. The carcinogenic risks of chloroform, 1,2-dichloroethane, 1,2-dibromoethane, benzyl chloride, hexachloro-1,3-butadiene, benzene and naphthalene were above the acceptable level (1.0 × 10?6) but below the tolerable risk level (1.0 × 10?4). Industrial emission was the major contributor to non-carcinogenic, and solvent use was the major contributor to carcinogenic risks.  相似文献   

7.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

8.
生物质成型燃料锅炉挥发性有机物排放特征   总被引:1,自引:0,他引:1  
以5台燃成型生物质燃料锅炉为研究对象,基于预浓缩-GC-MS/FID的测量方法,对成型生物质燃烧产生的烟气进行了挥发性有机物(VOCs)排放特征研究,同时还测定颗粒物、NO_x、SO_2和汞及其化合物的排放浓度.结果表明,5台锅炉所排放的SO_2和汞及其化合物均低于排放标准要求,而氮氧化物和颗粒物的排放存在高于国标排放限值现象.56种VOCs总质量浓度在(872.43±293.80)~(6 929.66±1 137.25)μg·m~(-3)之间,影响因素分析表明VOCs浓度与炉膛中心温度及负荷有较强负相关性.VOCs的排放中烯烃占比最大,达41%~59%,其次是烷烃和芳香烃,分别为27%~49%和6%~18%.烯烃的排放以乙烯、1-丁烯、顺-2-丁烯和1-己烯为主,烷烃以正己烷、异戊烷和环戊烷为主,芳香烃则以苯和甲苯为主.臭氧生成潜势采用最大增量反应活性法进行分析,5台锅炉的臭氧生成潜势贡献主要来自于烯烃,高达76%~90%,而烷烃也可占6%~19%.  相似文献   

9.
陈鹏  张月  张梁  熊凯  邢敏  李珊珊 《环境科学》2021,42(8):3604-3614
汽车维修行业挥发性有机物排放是臭氧前体物VOCs的重要来源,但目前汽车维修行业的VOCs减排政策主要基于VOCs的排放量,而没有考虑其化学反应活性,这将影响VOCs减排对改善空气质量的效果.通过分析汽车维修企业不同工段VOCs的产排污节点,结合各工段油漆用量及其VOCs质量分数,采用物料衡算法获得不同工段VOCs产生量及其组分,系统分析末端尾气VOCs的排放特征,并通过计算其臭氧生成潜势评估VOCs各组分的大气反应活性.结果表明,汽车维修行业油漆中产生的VOCs组分主要为苯系物,其中乙酸丁酯和二甲苯的质量分数最高.清漆由于其本身VOCs质量分数较高且用量较大,为汽车维修行业最大的VOCs排放源(92%).企业采用油性面漆VOCs产生量(22%)比水性面漆(3%)有较大程度增大,采用水性漆对汽修企业减少VOCs排放有显著效果.排气筒尾气中共检测出49种VOCs组分,前10种VOCs组分排放量占总排放量的97.9%,种类相对集中.主要污染物类别为芳香烃类(10种,30.90%~69.30%),主要组分有间/对-二甲苯(2.89%~45.00%);其次为OVOC (12种)和卤代烃(22种),贡献率分别为8.82%~43.71%和2.40%~25.00%,其他组分相对含量较少.芳香烃是汽车维修企业VOCs排放的最大组分,但是在不同研究中主要VOCs种类差异较大.汽车维修企业排放VOCs的OFP平均值为194.04 mg·m-3,SR平均值为3.37 g·g-1.间/对-二甲苯对汽车维修行业OFP贡献率最大(70.24%),为优先控制污染物.芳香烃对OFP的贡献率达到99.29%,是化学反应活性最强的组分.酯类在汽车维修行业VOCs组分中占比较大,但对OFP的贡献率相对较低,因此汽车维修行业应重点控制芳香烃类物质的排放.  相似文献   

10.
为了解邢台市不同行业企业挥发性有机物(VOCs)污染特征,通过Summa罐采集样品,采用预浓缩-气质联用仪系统(GC-MS/FID)进行测定分析,探究不同行业VOCs特征组分变化,并分析了VOCs排放对OFP(臭氧生成潜势)贡献影响.结果表明:①光伏元件制造、木材深加工及印刷行业排放的VOCs中以OVOCs(含氧挥发性有机物)为主,其占比在52.7%以上,特征物种为异丙醇、丙酮及乙酸乙酯等;玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中以芳香烃为主,占比为36.7%~93.8%,特征物种为间/对-二甲苯、邻-二甲苯和对-二乙基苯等.②玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中对OFP贡献较大组分为芳香烃,占比为88.3%~98.2%,活性物种为间/对-二甲苯、甲苯及邻-二甲苯等C7~C9的苯系物;光伏元件制造和印刷行业排放的VOCs中对OFP贡献较大的组分为OVOCs,占比为92.8%~95.2%,活性物种为异丙醇、乙酸乙酯及甲基乙基酮等;木材深加工行业排放的VOCs中对OFP贡献较大的组分为OVOCs和烯烃,占比分别为39.0%~53.4%和23.0%~25.3%,活性物种主要为丙酮、甲基乙基酮及1-丁烯等.研究显示,邢台市玻璃深加工和汽车表面喷涂企业中芳香烃对OFP影响较大,其次是印刷企业,亟需优先加强管控.   相似文献   

11.
轻型汽车和汽车塑料配件涂装工艺过程的VOCs组分特征   总被引:6,自引:1,他引:5  
通过采集和分析珠江三角洲(以下简称“珠三角”)地区轻型汽车和汽车塑料配件涂装工艺过程的VOCs样品,识别了上述两个行业不同涂装工艺过程的VOCs组分特征.结果表明:芳香烃(56.4%~75.5%)和OVOCs(11.0%~35.7%)为轻型汽车涂装工艺占比最大的两种VOCs组分;烷烃和烯炔烃在烘干工艺所占比重要高于喷涂工艺;1,2,4-三甲苯为电泳和面涂烘干工序的主要VOCs组分,间/对-二甲苯、乙酸丁酯、丙二醇甲醚醋酸酯分别为中涂、面涂和中涂烘干工序的主要VOCs组分.汽车塑料配件涂装工艺不同工序的VOCs组成相似,芳香烃(53.3%~58.3%)和OVOCs(40.9%~45.8%)为主要VOCs组成,甲苯、乙酸乙酯、乙酸丁酯等为主要VOCs组分.不同废气治理设施对汽车塑料配件涂装工艺VOCs组分会造成一定的影响.活性炭吸附治理设施处理后的主要VOCs组分为甲苯、乙苯和邻二甲苯等芳香烃组分,水喷淋治理设施则为乙酸乙酯、乙酸丁酯和丙二醇甲醚醋酸酯等OVOCs类组分.通过与其他研究对比,丙二醇甲醚醋酸酯作为原辅料和废气中的主要组分之一,在以往研究中并未识别出来,表明针对测试对象的原辅料与工艺信息的现场调研是开展VOCs组分特征及成分谱研究的基础工作,建议未来该方面研究加强对前期调研工作的重视.此外,建议关注行业发展趋势给VOCs成分谱研究带来的影响.  相似文献   

12.
工业源VOCs治理技术效果实测评估   总被引:4,自引:0,他引:4       下载免费PDF全文
根据珠三角地区典型工业行业VOCs治理技术应用情况调研数据,选取6种典型治理技术开展现场测试,比较各类技术对VOCs的去除率和对VOCs物种的去除特征. 结果表明:活性炭吸附、水喷淋+活性炭吸附、活性炭吸附浓缩+催化燃烧、低温等离子体、溶液吸收、水喷淋+溶液吸收6种技术对工业VOCs去除率的范围分别为-98.1%~79.2%(负值表示可能存在活性炭脱附作用,下同)、-167.4%~57.5%、-3.8%~66.5%、34.1%~96.3%、22.8%~43.1%和2.7%~19.6%. 活性炭吸附及其组合技术对ρ(VOCs)<100 mg/m3的废气处理效果很差;而低温等离子体对ρ(VOCs)>1 000 mg/m3的废气治理效果较差. 活性炭吸附及其组合治理技术对芳香烃、酯类和醚类的去除率一般在40.0%左右;低温等离子体对除卤代烃外的其他物种去除率在28.6%~74.6%之间;溶液吸收法对醚类、芳香烃、酯类和卤代烃的去除率达33.2%~90.1%,而水喷淋+溶液吸收法对醇类、酮类和醚类的去除率可达到41.8%~98.9%. 未来应从经济、技术、监管三方面对工业VOCs治理技术进行综合评估,同时应对更多工业源的VOCs治理技术开展实测评估.   相似文献   

13.
A continuous online observation of ozone and its precursors(NOx, VOCs) was carried out in central urban Wuhan from September 2016 to August 2017. The concentration levels of ozone,NOx, VOCs and their variations in urban Wuhan were analyzed, as well as effects of VOCs on ozone photochemical generation and the main controlling factors for ozone production. During the observation period, the average concentrations of ozone and NOx in Wuhan was 22.63 and30.14 ppbv, respectively, and the average concentration of VOCs was 32.61 ppbv(42.3% alkanes,13.0% alkenes, 10.0% aromatics, 7.3% acetylene, 9.9% OVOCs, and 10.5% halohydrocarbons).Ozone concentration was higher in spring and summer as compared with autumn and winter,wheras VOCs and NOx concentratios were lower in spring and summer but higher in autumn and winter. Aromatics and alkenes, two of VOCs species, showed the highest contributions to ozone formation potential in Wuhan(35.7% alkenes, 35.4 aromatics, 17.5% alkanes, 8.6% OVOCs,1.6% halogenated hydrocarbons, and 1.4% acetylene). Among all VOCs species, those with the highest contribution were ethylene, m-xylene, toluene, propylene and o-xylene. The contribution of these five compounds to the total ozone formation potential concentration was 43.90%.Ozone-controlling factors in Wuhan changed within one day; during the early morning hours(6:00–9:00), VOCs/NOx was low, and ozone generation followed a VOCs-limited regime.However, during the peak time of ozone concentration(12:00–16:00), the ratio of VOCs/NOx was relatively high, suggesting that ozone generation followed a NOx-limited regime.  相似文献   

14.
维生素C工业废水处理系统VOCs污染特性   总被引:1,自引:0,他引:1  
郭斌  律国黎  任爱玲  杜昭  邢志贤  韩鹏  高博  刘淑娅 《环境科学》2013,34(12):4654-4660
采用便携式气相色谱-质谱联用仪(GC-MS)测试了维生素C工业废水处理系统各单元环境空气中挥发性有机物(VOCs)的污染现状,分析和总结了挥发性有机物(VOCs)的种类特征.结果表明,废水处理系统中共检测出32种物质,逸散的总挥发性有机物(TVOCs)浓度范围为0.962 9~32.097 0 mg·m-3.其中,位于废水处理系统最前端半密闭状态的沉砂池是逸散VOCs种类最多、强度最大的单元,为25种,其总浓度为32.097 0 mg·m-3,沉砂池中小分子硫化物所占比例较大,为30.02%;后续处理单元中芳香烃比例较高约占监测总量的21.06%~31.48%.监测出VOCs的主要种类为氯代烃类、酮类,分别占监测总量的6.39%~55.80%、10.40%~58.08%,废水处理系统各单元均监测到丙酮、2-丁酮、正己烷、氯仿、氯苯等14种VOCs,其中氯乙烯、苯乙烯、1,3-丁二烯3种属于高毒性物质,监测出的氯乙烯浓度超过《大气污染物综合排放标准》(GB 16297-1996)标准,1,3-丁二烯等多种污染物尚无国家标准限值,本研究结果可为我国制药废水VOCs排放标准的修制提供科学依据.  相似文献   

15.
为掌握印刷行业VOCs(挥发性有机化合物)污染特征,进一步科学合理地推进印刷行业VOCs减排,利用“气袋法采样+实验室FID检测”以及便携式非甲烷总烃测试仪对京津冀地区25家典型印刷企业VOCs排放情况进行检测.基于21类含VOCs原辅材料的VOCs含量及时应使用环节废气VOCs浓度的监测结果,得出不同类型原辅材料VOCs含量水平,以及产污环节的VOCs废气浓度水平.结果表明:①油墨VOCs含量范围为0.05%~76.9%,胶印油墨、凹印油墨、柔印油墨和网印油墨符合GB 38507—2020《油墨中可挥发性有机化合物(VOCs)含量的限值》中含量限值的样品数分别占抽检样品总数的98.3%、85.7%、66.7%和100.0%,VOCs含量水平差别较大.②润版液、清洗剂、胶粘剂、光油等原辅材料VOCs含量水平分别为0.4%~45.0%、3.0%~98.7%、0.1%~60.0%、0.1%~50.0%,其中溶剂型样品VOCs含量明显高于水性、UV样品.③从生产过程VOCs产污水平来看,同类工艺的烘干环节VOCs产污浓度普遍高于印刷、清洗、润版等环节;采用溶剂型油墨、胶粘剂、光油的生产工艺VOCs产污浓度(100.0~5 000.0 mg/m3)明显高于其他工艺类型(10.0~500.0 mg/m3);VOCs产污浓度最高的为采用溶剂型油墨的凹版印刷工艺(300.0~5 000.0 mg/m3),其次为采用溶剂型胶粘剂的干式复合工艺(300.0~1 000.0 mg/m3)和采用溶剂型光油的上光工艺(200.0~1 000.0 mg/m3).研究显示,平版胶印、柔印、丝印、复合、上光等工艺均可通过源头替代达到较低的VOCs产污浓度水平(≤50.0 mg/m3),但凹印工艺在采用水性墨替代后VOCs产污浓度水平为50.0~500.0 mg/m3,仍需采取高效的末端处理措施.   相似文献   

16.
用BP神经网络模型定量估算石化企业炼油废水处理中的VOCs   总被引:1,自引:0,他引:1  
将BP神经网络理论引入石化企业炼油厂废水处理中的VOCs挥发量估算。在分析影响VOCs挥发因素的基础上,利用基于MATLAB神经网络工具箱的图形用户界面GUI,建立了石化企业炼油废水处理中VOCs挥发量估算的BP神经网络模型。用该模型对样本集进行了学习训练和仿真测试,并将训练好的神经网络应用于相关实例的估算。结果表明,应用BP神经网络方法进行石化企业炼油废水处理中VOCs挥发量估算结果与美国环保局推荐软件WATER9的计算结果误差在1.49%~17.46%之间,为石化企业炼油废水处理中VOCs挥发量估算提供了一种较为可靠的方法。  相似文献   

17.
采用吹扫捕集-GC/MS对地表水中39种的VOCs进行了测定。各组分的检出限为0.1μg/L~25.2μg/L,回收率在85%~117%之间,精密度在0.5%~14.5%之间。其结果令人满意,适用于韶关市地表水中VOCs的测定。  相似文献   

18.
本文针对京津冀区域,基于传统的排放因子法建立了区域人为源VOCs物种排放清单;并基于区域卫星遥感甲醛信息和典型城市地面VOCs观测信息,开展了VOCs物种清单多维校验研究.清单计算结果表明,该区域2013、2015和2017年VOCs排放量分别为202.67、207.34和193.42万t,以烷烃(29.83%~30.72%)、不饱和烃(16.54%~17.68%)、芳香烃(27.14%~27.51%)、醛(8.75%~9.52%)、酮(8.13%~9.04%)和醇醚酯(5.13%~6.60%)为主.2013~2017年VOCs清单排量,张家口、秦皇岛和衡水小幅上升(每年1.10%~1.66%),邢台和邯郸小幅下降(每年-1.46%~-1.12%),承德、唐山、保定和沧州呈稳定趋势,且与卫星遥感HCHO柱浓度年际变化呈现较好的一致性趋势;而北京、天津、廊坊和石家庄的VOCs排放年变幅(每年-6.51%、-3.30%、2.16%和0.11%)与HCHO柱浓度变幅(每年-1.17%、7.19%、-0.24%和6.68%)差异较大.在VOCs清单区域空间分布上,城市地区VOCs网格排放量与HCHO柱浓度取得了较好的线性相关性(R>0.5);而在郊区地区,两者相关度仅为0.33,主要源于郊区天然源VOCs二次转化对HCHO的重要影响和贡献.最后,本文在北京市和邯郸市城区开展了VOCs地面浓度观测,回归了主要VOCs化合物与CO的排放比值(ER),对比发现:大部分烃类化合物的清单ER值与回归ER值具有较好的吻合度,但乙烷的清单ER值显著偏低(-156%~-73%),C8以上芳香烃有所偏高(54%~74%).总体而言,本文建立的区域人为源VOCs物种清单具有较好的准确性和可靠性.  相似文献   

19.
焦化厂因其工艺特殊,SO2、NOx、颗粒物及VOCs的排放问题较为突出。故对焦化厂厂界环境空气VOCs排放特征进行分析,并依据最大增量反应活性(MIR)法和等效丙烯浓度(PEC)法对VOCs的臭氧生成潜势(OFP)进行评估,依据气溶胶生成系数(FAC)法对VOCs二次有机气溶胶生成潜势(SOAFP)进行评估。结果表明:1)厂界上、下风向5个点位共分析出包括芳香烃、卤代烃、烯烃、硫化物、酮类在内的17种VOCs; 2)不同区域厂界检出的VOCs差异显著,总质量浓度为28.2~167.9μg/m3,其中芳香烃在各点位TVOCs中占比最大,达到51.01%~84.63%;3)脱硫提盐冷鼓区域边界OFP最大,理论值为335.51μg/m3,办公生活区边界OFP最小,理论值为47.06μg/m3,芳香烃对OFP贡献率为27.21%~62.37%,烯烃为39.17%~61.84%,卤代烃为2.08%~14.56%;通过PEC法估算OFP,结果变化趋势与MIR法结果相一致,等效丙烯浓度为3.11~31.89μg/m3;且1—5点位芳香烃的等效丙烯浓度贡献率分别为37.10%、51.46%、66.79%、58.80%和22.74%;4)1—5点位SOAFP分别为0.452,0.938,2.517,4.055,0.495μg/m3;芳香烃对SOAFP贡献最大。丙烯、甲苯、二甲苯、氯乙烯等质量浓度和反应活性均较大的物质,是需要优先控制的VOCs组分,可作为焦化厂环境空气VOCs的标志物。  相似文献   

20.
南京北郊大气VOCs变化特征及来源解析   总被引:10,自引:8,他引:2  
安俊琳  朱彬  王红磊  杨辉 《环境科学》2014,35(12):4454-4464
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs浓度变化特征和特征物比值差异展开研究,并应用PCA/APCS受体模型对不同季节VOCs来源进行了解析.结果表明,南京大气总VOCs体积混合比为43.52×10-9,其中烷烃占45.1%、烯烃占25.3%、炔烃占7.3%和芳香烃占22.3%.总VOCs体积混合比呈现夏季高,冬季低的季节变化.VOCs组分中烷烃在冬季最高,烯烃夏季最高,芳香烃春季最高,炔烃冬季最高.特征物比值(VOCs/乙炔)和T/B比值反映出观测点受周边工业区影响较大.VOCs源解析表明,主要来源来自工厂生产、机动车排放、燃料燃烧、生产活动挥发、溶剂使用和自然源.虽然有季节变化,但与工业生产活动相关的来源占大气VOCs 45%~63%,其次为机动车来源占34%~50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号